Difference between revisions of "Geometrical optics and ray tracing"

From Course Wiki
Jump to: navigation, search
Line 3: Line 3:
 
{{Template:20.309}}
 
{{Template:20.309}}
  
==Refraction and reflection==
+
==Refraction and Reflection==
  
 
[[File: 20.309 130819 Snell.png|right|thumb|200px]]
 
[[File: 20.309 130819 Snell.png|right|thumb|200px]]
 +
 
===Refraction and reflection at a boundary===
 
===Refraction and reflection at a boundary===
  
Line 48: Line 49:
  
 
{| class="wikitable"
 
{| class="wikitable"
!width="350"| Convex lens
+
!width="350"| Bi-convex lens
 
!width="350"| Plano-concave lens
 
!width="350"| Plano-concave lens
 
|-
 
|-
Line 59: Line 60:
 
* Concave lens: the lens maker formula holds for <math>R_1</math> < 0.
 
* Concave lens: the lens maker formula holds for <math>R_1</math> < 0.
  
 +
===Types of spherical lenses===
  
 +
{| class="wikitable"
 +
|[[Image: 20.309 130819 TypeLenses.png|center|500px]]
 +
|}
 +
 +
==Ray Tracing==
 +
 +
{|align="center" class="wikitable" cellpadding="2"
 +
|+ Ray tracing principles
 +
|[[Image: 20.309 130819 RayTracing1.png|frameless|center|200px]]
 +
|width="300"|Rays passing through the optical center of a lens continue in a straight line
 +
|-
 +
|[[Image: 20.309 130819 RayTracing2.png|frameless|center|200px]]
 +
|width="300"|Rays traveling parallel to the optical axis pass through the focal point after refraction and ''vice versa''
 +
|-
 +
|[[Image: 20.309 130819 RayTracing3.png|frameless|center|200px]]
 +
|width="300"| Parallel rays pass through the same point in the focal plane after refraction and ''vice versa''
 +
|}
  
 
{{Template:20.309 bottom}}
 
{{Template:20.309 bottom}}

Revision as of 18:27, 19 August 2013

20.309: Biological Instrumentation and Measurement

ImageBar 774.jpg


Refraction and Reflection

20.309 130819 Snell.png

Refraction and reflection at a boundary

  • The Snell-Descartes law or law of refraction stipulates that
$ n_i\ \sin \theta_i = n_t\ \sin \theta_t $
with θ the angle measured from the normal of the boundary, $ n $ the refractive index (which is unitless) of the medium, the subscripts $ i $ and $ t $ referring to the incident and transmitted light, respectively.
  • The law of reflection states that θi = θr


Refraction and reflection at a spherical interface

20.309 130819 RefractionAtSphere.png

With the assumptions:

  • Paraxial approximation: θ ≈ sin θ ≈ tan θ
  • Thin lens approximation: $ R << S_o,\ S_i $

Snell's law predicts that

$ n\ \sin \theta_1 = n'\ \sin \theta_2 $
$ \sin \theta_1 \approx \sin a + \sin b \approx {h \over S_o} + {h \over R} $
$ \sin \theta_2 \approx \sin b - \sin c \approx {h \over R} - {h \over S_i} $
$ {n \over S_o} + {n' \over S_i} = {(n'\ - n)\over R} $

Note that

  • Si does not depend on the angle $ a $.
  • Light coming from a point on the filament passes through a point after refraction.
  • We shall revisit these assumptions later.
20.309 130819 RefSphere2.png
a) $ S_o > {n\ R \over (n'\ - n)}\ \Rightarrow S_i > 0 $ , b) $ S_o = {n\ R \over (n'\ - n)}\ \Rightarrow S_i \to + \infty $, c) $ S_o = {n\ R \over (n'\ - n)}\ \Rightarrow S_i < 0 $


Lenses

Lens maker formula

A simple lens consists of two spherical interfaces. Its focal length $ f $ is given by the lens maker formula:

$ {1 \over S_o} + {1 \over S_i} = {1 \over f} = {(n'\ - n) \over n} \left ( {1 \over R_1} - {1 \over R_2} \right ) $
Bi-convex lens Plano-concave lens
20.309 130819 LensMaker2.png
20.309 130819 ConcaveLens.png
  • Use the image from the first refraction as the object for the second.
  • Note the sign convention for the second surface: $ R_2 $ < 0 for a convex lens, and $ (n'\ - n) $ has opposite sign.
  • Concave lens: the lens maker formula holds for $ R_1 $ < 0.

Types of spherical lenses

20.309 130819 TypeLenses.png

Ray Tracing

Ray tracing principles
20.309 130819 RayTracing1.png
Rays passing through the optical center of a lens continue in a straight line
20.309 130819 RayTracing2.png
Rays traveling parallel to the optical axis pass through the focal point after refraction and vice versa
20.309 130819 RayTracing3.png
Parallel rays pass through the same point in the focal plane after refraction and vice versa