Difference between revisions of "Geometrical optics and ray tracing"

From Course Wiki
Jump to: navigation, search
Line 38: Line 38:
 
|c) <math> S_o = {n\ R \over (n'\ - n)}\ \Rightarrow S_i < 0</math>
 
|c) <math> S_o = {n\ R \over (n'\ - n)}\ \Rightarrow S_i < 0</math>
 
|}
 
|}
 +
 +
 +
==Lenses==
 +
 +
===Lens maker formula===
 +
 +
A simple lens consists of two spherical interfaces.  Its focal length <math>f</math> is given by the lens maker formula:
 +
:<math> {1 \over S_o} + {1 \over S_i} = {1 \over f} = {(n'\ - n) \over n} \left ( {1 \over R_1} - {1 \over R_2} \right )</math>
 +
 +
{| class="wikitable"
 +
!width="350"| Convex lens
 +
!width="350"| Plano-concave lens
 +
|-
 +
|[[Image: 20.309 130819 LensMaker2.png|frameless|center|350px]]
 +
|[[Image: 20.309 130819 ConcaveLens.png|frameless|center|200px]]
 +
|}
 +
 +
* Use the image from the first refraction as the object for the second.
 +
* Note the sign convention for the second surface: <math>R_2</math> < 0 for a convex lens, and <math>(n'\ - n)</math> has opposite sign.
 +
* Concave lens: the lens maker formula holds for <math>R_1</math> < 0.
 +
 +
  
 
{{Template:20.309 bottom}}
 
{{Template:20.309 bottom}}

Revision as of 17:25, 19 August 2013

20.309: Biological Instrumentation and Measurement

ImageBar 774.jpg


Refraction and reflection

20.309 130819 Snell.png

Refraction and reflection at a boundary

  • The Snell-Descartes law or law of refraction stipulates that
$ n_i\ \sin \theta_i = n_t\ \sin \theta_t $
with θ the angle measured from the normal of the boundary, $ n $ the refractive index (which is unitless) of the medium, the subscripts $ i $ and $ t $ referring to the incident and transmitted light, respectively.
  • The law of reflection states that θi = θr


Refraction and reflection at a spherical interface

20.309 130819 RefractionAtSphere.png

With the assumptions:

  • Paraxial approximation: θ ≈ sin θ ≈ tan θ
  • Thin lens approximation: $ R << S_o,\ S_i $

Snell's law predicts that

$ n\ \sin \theta_1 = n'\ \sin \theta_2 $
$ \sin \theta_1 \approx \sin a + \sin b \approx {h \over S_o} + {h \over R} $
$ \sin \theta_2 \approx \sin b - \sin c \approx {h \over R} - {h \over S_i} $
$ {n \over S_o} + {n' \over S_i} = {(n'\ - n)\over R} $

Note that

  • Si does not depend on the angle $ a $.
  • Light coming from a point on the filament passes through a point after refraction.
  • We shall revisit these assumptions later.
20.309 130819 RefSphere2.png
a) $ S_o > {n\ R \over (n'\ - n)}\ \Rightarrow S_i > 0 $ , b) $ S_o = {n\ R \over (n'\ - n)}\ \Rightarrow S_i \to + \infty $, c) $ S_o = {n\ R \over (n'\ - n)}\ \Rightarrow S_i < 0 $


Lenses

Lens maker formula

A simple lens consists of two spherical interfaces. Its focal length $ f $ is given by the lens maker formula:

$ {1 \over S_o} + {1 \over S_i} = {1 \over f} = {(n'\ - n) \over n} \left ( {1 \over R_1} - {1 \over R_2} \right ) $
Convex lens Plano-concave lens
20.309 130819 LensMaker2.png
20.309 130819 ConcaveLens.png
  • Use the image from the first refraction as the object for the second.
  • Note the sign convention for the second surface: $ R_2 $ < 0 for a convex lens, and $ (n'\ - n) $ has opposite sign.
  • Concave lens: the lens maker formula holds for $ R_1 $ < 0.