Difference between revisions of "Geometrical optics and ray tracing"

From Course Wiki
Jump to: navigation, search
(Created page with "Category:20.309 Category:Optical Microscopy Lab {{Template:20.309}} ==Refraction and reflection at a boundary== * The Snell-Descartes law or law of refraction stipulate...")
 
Line 3: Line 3:
 
{{Template:20.309}}
 
{{Template:20.309}}
  
==Refraction and reflection at a boundary==
+
==Refraction and reflection==
 +
 
 +
[[File: 20.309 130819 Snell.png|right|thumb|200px]]
 +
===Refraction and reflection at a boundary===
  
 
* The Snell-Descartes law or law of refraction stipulates that  
 
* The Snell-Descartes law or law of refraction stipulates that  
:<big><math>n_i sin\theta_i = n_t sin\theta_t</math></big>
+
:<math> n_i\ \sin \theta_i = n_t\  \sin \theta_t </math>
 +
:with  <i>&theta;</i> the angle measured from the normal of the boundary, <math>n</math> the refractive index (which is unitless) of the medium,  the subscripts <math>i</math> and <math>t</math> referring to the incident and transmitted light, respectively.
 +
* The law of reflection states that <i>&theta;<sub>i</sub></i> = <i>&theta;<sub>r</sub></i>
 +
 
 +
 
 +
===Refraction and reflection at a spherical interface===
 +
 
 +
[[Image: 20.309 130819 RefractionAtSphere.png|center|thumb|600px]]
 +
With the assumptions:
 +
* Paraxial approximation: θ ≈ sin θ ≈ tan θ
 +
* Thin lens approximation: <math>R << S_o,\ S_i </math>
 +
Snell's law predicts that
 +
:<math> n\ \sin \theta_1 = n'\  \sin \theta_2 </math>
 +
:<math> \sin \theta_1 \approx \sin a + \sin b \approx {h \over S_o} + {h \over R} </math>
 +
:<math> \sin \theta_2 \approx \sin b - \sin c \approx {h \over R} - {h \over S_i} </math>
 +
:<math> {n \over S_o} + {n' \over S_i} = {(n'\ - n)\over R} </math >
 +
 
 +
Note that
 +
* ''S<sub>i</sub>'' does not depend on the angle <math>a</math>.
 +
* Light coming from a point on the filament passes through a point after refraction.
 +
* We shall revisit these assumptions later.
 +
 
 +
 
 +
[[Image: 20.309 130819 RefSphere2.png|center|thumb|600px|Refraction at a spherical interface:
 +
(a) <math> S_o > {n\ R \over (n'\ - n)}\ \Rightarrow S_i > 0</math> ,
 +
(b) <math> S_o = {n\ R \over (n'\ - n)}\ \Rightarrow S_i \to +\ \infty</math>,
 +
(c) <math> S_o = {n\ R \over (n'\ - n)}\ \Rightarrow S_i < 0</math>]]
 +
 
  
with  <math>\theta</math> the angle measured from the normal of the boundary, <math>n</math> the refractive index (which is unitless) of the medium,  the subscripts <math>i</math> and <math>t</math> referring to the incident and transmitted light, respectively.
 
  
 
{{Template:20.309 bottom}}
 
{{Template:20.309 bottom}}

Revision as of 14:57, 19 August 2013

20.309: Biological Instrumentation and Measurement

ImageBar 774.jpg


Refraction and reflection

20.309 130819 Snell.png

Refraction and reflection at a boundary

  • The Snell-Descartes law or law of refraction stipulates that
$ n_i\ \sin \theta_i = n_t\ \sin \theta_t $
with θ the angle measured from the normal of the boundary, $ n $ the refractive index (which is unitless) of the medium, the subscripts $ i $ and $ t $ referring to the incident and transmitted light, respectively.
  • The law of reflection states that θi = θr


Refraction and reflection at a spherical interface

20.309 130819 RefractionAtSphere.png

With the assumptions:

  • Paraxial approximation: θ ≈ sin θ ≈ tan θ
  • Thin lens approximation: $ R << S_o,\ S_i $

Snell's law predicts that

$ n\ \sin \theta_1 = n'\ \sin \theta_2 $
$ \sin \theta_1 \approx \sin a + \sin b \approx {h \over S_o} + {h \over R} $
$ \sin \theta_2 \approx \sin b - \sin c \approx {h \over R} - {h \over S_i} $
$ {n \over S_o} + {n' \over S_i} = {(n'\ - n)\over R} $

Note that

  • Si does not depend on the angle $ a $.
  • Light coming from a point on the filament passes through a point after refraction.
  • We shall revisit these assumptions later.


Refraction at a spherical interface: (a) $ S_o > {n\ R \over (n'\ - n)}\ \Rightarrow S_i > 0 $ , (b) $ S_o = {n\ R \over (n'\ - n)}\ \Rightarrow S_i \to +\ \infty $, (c) $ S_o = {n\ R \over (n'\ - n)}\ \Rightarrow S_i < 0 $