Difference between revisions of "20.109(S21):M3D4"

From Course Wiki
Jump to: navigation, search
(Part 2: Primer design for mutagenesis)
(Part 2: Design primers for SDM)
Line 77: Line 77:
 
#Spread 50 μL onto LB+Amp plate and incubate overnight at 37 °C.
 
#Spread 50 μL onto LB+Amp plate and incubate overnight at 37 °C.
  
===Part 2: Design primers for SDM===
+
===Part 2: Design primers for site-directed mutagenesis===
  
 
It is not experimentally efficient, or entirely plausible, to pick out and modify a single amino acid residue in inverse pericam post-translationally. Instead researchers genetically encode desired mutations by incorporating mutations in the DNA sequence.  This is accomplished by making changes to the basepairs of a gene of interest that was cloned into a plasmid.  Then the plasmid with the mutated gene is amplified using bacterial cells.   
 
It is not experimentally efficient, or entirely plausible, to pick out and modify a single amino acid residue in inverse pericam post-translationally. Instead researchers genetically encode desired mutations by incorporating mutations in the DNA sequence.  This is accomplished by making changes to the basepairs of a gene of interest that was cloned into a plasmid.  Then the plasmid with the mutated gene is amplified using bacterial cells.   

Revision as of 17:36, 28 April 2021

20.109(S21): Laboratory Fundamentals of Biological Engineering

Sp21 banner image v2.png

Spring 2021 schedule        FYI        Assignments        Homework        Communication |        Accessibility

       M1: Antibody engineering        M2: Drug discovery        M3: Protein engineering       


Introduction

Congratulations on reaching your final (virtual) laboratory day in 20.109! To complete your experience and training, the goal for today to synthesize the data that you collected and analyzed throughout this module and refine the approach such that an improved hypothesis can be tested. By pulling all of this information together you will, hopefully, be able to use the data generated by previous 109ers to make more informed mutations that alter affinity and / or cooperativity in IPC. This module highlights the basis of scientific research as an iterative process that consists of four stages: designing experiments, collecting data, analyzing results, and refining the approach. This rigorous cycle is how we ensure our results are accurate and reproducible!

When considering results that will be used to refine a research approach, it is important to recognize that not all data are created equal. For several reasons, including technical error and reagent failure, it often happens that an experiment does not work as expected. By including controls, researchers are able to identify these issues and rectify them in follow-up experiments. In addition to using controls that validate the results, researchers use replicates and repeat experiments to ensure the data are robust. All of these internal checks allow researchers to be confident about the results they report.

Today you will critically think about the data that you analyzed in this module and rationally design an IPC with altered affinity / cooperativity given what you learned in your research. Though considering the results of the current Variant IPC is important in your goal for today, it is just as important to decide which results are relevant or valid to your design strategy.

Though you will not have the opportunity to test your Variant IPC this semester, you are more than welcome to complete the calcium titration experiment with your protein as soon as you are invited back to campus! We will be more than happy to host you in the laboratory for some actual benchwork!!

Protocols

Part 1: Review site-directed mutagenesis

Schematic of NEB Q5 Site Directed Mutagenesis Kit procedure modified from NEB manual.

We will be using the Q5 Site Directed Mutagenesis Kit from NEB to perform your site-directed mutagenesis reactions. Each group will set up one reaction, for your X#Z mutation. Meanwhile, the teaching faculty will set up a single positive control reaction, to ensure that all the reagents are working properly. You should work quickly but carefully, and keep your tube in a chilled container at all times. Please return shared reagents to the ice bucket(s) from which you took them as soon as you are done with each one.

  1. Get a PCR tube and label the top with your mutation and lab section (write small!).
  2. Add 10.25 μL of nuclease-free water.
  3. Add 1.25 μL of your mutagenesis primer mix (each primer should be at a concentration of 10 μM).
  4. Add 1 μL of IPC template DNA (concentration of 25 ng/μL).
  5. Lastly, use a filter tip to add 12.5 μL of Q5 Hot Start High-Fidelity 2X Master Mix - containing buffer, dNTPs, and polymerase - to your tube.
  6. Once all groups are ready, we will begin the thermocycler, under the following conditions:
Segment Cycles Temperature Time
Initial denaturation 1 98 °C 30 s
Amplification 25 98 °C 10 s
55 °C 30 s
72 °C 2 min
Final extension 1 72 °C 2 min
Hold 1 4 °C indefinite
  • After the cycling is completed, the teaching faculty will complete the KLD reaction (which stands for "kinase, ligase, DnpI") using 1 μL of your amplification product, 5 μL 2X KLD Reaction Buffer, 1 μL KLD Enzyme Mix, and 3 μL nuclease-free water. The reactions will be incubated for 5 min at room temperature.
  • The teaching faculty will then use 5 μL of the KLD reaction product to complete a transformation into an E. coli strain (NEB 5α cells of genotype fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17) that will amplify the plasmid such that you are able to confirm the appropriate mutation was incorporated. The transformation procedure will be as follows:
  1. Add 5 μL of KLD mix to 50 μL of chemically-competent NEB 5α.
  2. Incubate on ice for 30 min.
  3. Heat shock at 42 °C for 30 s.
  4. Incubate on ice for 5 min.
  5. Add 950 μL SOC and gently shake at 37 °C for 1 h.
  6. Spread 50 μL onto LB+Amp plate and incubate overnight at 37 °C.

Part 2: Design primers for site-directed mutagenesis

It is not experimentally efficient, or entirely plausible, to pick out and modify a single amino acid residue in inverse pericam post-translationally. Instead researchers genetically encode desired mutations by incorporating mutations in the DNA sequence. This is accomplished by making changes to the basepairs of a gene of interest that was cloned into a plasmid. Then the plasmid with the mutated gene is amplified using bacterial cells.

Schematic for mutating gene sequences in plasmids using SDM technique. Image modified from Q5 Site-Directed Mutagenesis Kit Manual published by NEB.
To incorporate a mutation at a specific location in the DNA sequence, synthetic primers can be used in a technique referred to site-direction mutagenesis (see figure on the right). Primer design for site-directed mutagenesis, or SDM, is quite straightforward: the forward primer introduces a mutation into the coding strand. Both non-mutagenic and mutagenic amplification require cycles of DNA melting, annealing, and extension.

Primers used in SDM must meet several design criteria to ensure specificity and efficiency. Consider the following design guidelines for mutagenesis primers:

  • Desired mutation (1-2 bp) must be present in the middle of the forward primer.
  • Forward and reverse primers should 'face' away from the mutation and be 'back-to-back' when annealed to the template.
  • Rrimers should be 25-45 bp long.
  • G/C content of > 40% is desired.
  • Both primers should terminate in at least one G or C base.
  • The melting temperature should exceed 78°C, according to:
    • Tm = 81.5 + 0.41 (%GC) – 675/N - %mismatch
    • where N is primer length and the two percentages should be integers

To demonstrate primer design, the illustration below uses S101L, which is an uninteresting mutation but a helpful example:

Residue 101 of calmodulin is serine, encoded by the AGC codon. This is residue 379 with respect to the entire inverse pericam construct, and we can find it and some flanking code in the DNA sequence from Part 2:

361 (5') GAG GAA ATC CGA GAA GCA TTC CGT GTT TTT GAC AAG GAT GGG AAC GGC TAC ATC AGC GCT (3')

381 (5') GCT CAG TTA CGT CAC GTC ATG ACA AAC CTC GGG GAG AAG TTA ACA GAT GAA GAA GTT GAT (3')

To change from serine to leucine, one might choose TTA, TTG, or CTN (wherer N = T, A, G, or C). Because CTC requires only two mutations (rather than three as for the other options), we choose this codon.

Now we must keep >10 bp of sequence on each side in a way that meets all our requirements. To quickly find G/C content and see secondary structures, look at the IDT website. (Note that the Tm listed at this site is not one that is relevant for mutagenesis.)

Ultimately, your forward primer might look like the following, which has a Tm of almost 81°C, and a G/C content of ~58%.

5’ GG AAC GGC TAC ATC CTC GCT GCT CAG TTA CGT CAC G 3'

The reverse primer is the inverse complement of a sequence just preceding the forward primer in the IPC gene. The forward and reverse primers are set up back-to-back.

Lucky for us, NEB has a tool that can design our mutagenic primers.

  1. Go to the NEBaseChanger site and click 'Please enter a new sequence to begin.'
    • A new window will open. Copy and paste the wild-type IPC sequence.
  2. Confirm that the 'Substitution' option is selected.
  3. Highlight the basepairs you want to mutate using by scrolling through the sequence, or you can search the sequence by typing the basepairs into the 'Find' box.
  4. Type the new DNA sequence (the basepair(s) you want your forward mutagenic primer to incorporate into the IPC sequence) in the 'Desired Sequence' box.
    • Under the Result header, a diagram showing where your primers will anneal is provided.
    • Under the Required Primers header, the sequences for your forward primer and reverse primer are shown with the characteristics for each.
  5. Screen capture the information provided in the Result and Required Primers sections.
    • Embed the images in your notebook.
    • Print the screen capture and submit it to the teaching faculty before you leave today. In addition, record your primer sequences in the table on the Discussion page.
    • It is very important that you submit your primer sequences before you leave! The teaching faculty will order your primers from IDT DNA tonight to ensure they arrive by your next class.
  6. Use the guidelines above to examine the mutagenesis primers designed by NEBaseChanger. Include your thoughts in your notebook.
    • Do NOT alter the primers provided by NEB.

Part 3: Start Mini-report assignment

The final writing assignment in Module 3 is the Mini-report. In this assignment you will provide a description of the data analysis you completed to study the effects of mutating residues in IPC. To help you organize your thoughts and to ensure you ready to prepare this assignment in the next laboratory session, work with your laboratory partner(s) to prepare an outline of your Mini-report. Include the following information:

  1. List the key topics that will be addressed / explained in the Background and Approach section.
  2. List the figures that will be included and provide a brief description of how the data will be presented in the figures. Also, include a statement concerning the interpretation of the data represented in each figure.
  3. Review the Mini-report assignment page for guidance!

Navigation links

Previous day: Evaluate effect of mutations on IPC variants