Difference between revisions of "20.109(F15):Battery assembly and testing (Day5)"

From Course Wiki
Jump to: navigation, search
(Introduction)
Line 2: Line 2:
 
<div style="padding: 10px; width: 790px; border: 5px solid #0099FF;">
 
<div style="padding: 10px; width: 790px; border: 5px solid #0099FF;">
 
==Introduction==
 
==Introduction==
 
+
The materials prepared in this lab have activity as battery electrodes. The redox properties of the material will determine the operating voltage of the electrode, while other properties of the material will improve capacity (how long the battery will last under a given current load) and rate capability (how quickly the battery can be discharged or charged). Capacity and rate capability can be improved by either making materials very small (nanomaterials) or by incorporating conducting metals into the matrix of the material.
To answer these questions, you will assemble your nanowires into a battery, mixing a known percentage of the active nanowire material, with a small amount of conducting material and a small amount of binding material. The conducting material we'll use is a graphite carbon called “Super P”. The binder is a kind of teflon called polytetrafluoroethylene, or PTFE for short, that will hold the nanowires and carbon conductor together. The nanowires, carbon and teflon will form a flexible film that you'll roll out like cookie dough and that will serve as the electrode (shown in black in this image) for your battery. The electrode will then be moved into a glovebox to be assembled with the lithium and the electrolyte, and pressed into a coin-type casing.
+
  
 
==Protocols==
 
==Protocols==
  
 
==Navigation Links==
 
==Navigation Links==

Revision as of 17:59, 16 November 2015


20.109(F15): Laboratory Fundamentals of Biological Engineering

20109 F15 TestImage.png

Home        People        Schedule Fall 2015        Assignments        Homework        Lab Basics        Wiki Basics       
DNA Engineering        Protein Engineering        Biomaterials Engineering              

Introduction

The materials prepared in this lab have activity as battery electrodes. The redox properties of the material will determine the operating voltage of the electrode, while other properties of the material will improve capacity (how long the battery will last under a given current load) and rate capability (how quickly the battery can be discharged or charged). Capacity and rate capability can be improved by either making materials very small (nanomaterials) or by incorporating conducting metals into the matrix of the material.

Protocols

==Navigation Links==