M2D1: Complete in silico cloning of dCas9

10/12/16

- 1. Pre-lab Discussion
- 2. Design primers to dCas9
- 3. In silico PCR amplification, digest, and ligation
- 4. REAL diagnostic digest of pdCas9

(Almost) done with Mod1!

- Mini-presentation
 - due 10pm on Saturday, October 14
 - You don't have to be exhaustive;
 tell a focused story

Data summary

- ✓ draft due 10pm on Wednesday, October 11
- receive all comments by Monday, October 16th
- revision due 10pm on Sunday, October 22nd
- Blog post
 - due 10pm on Monday, October 23

Sign up for journal club (M2D2 homework)

- Pick 1 of 20 papers, or suggest your own
- Present M2D4 (October 24) or M2D6 (October 31)
- Sign up by adding your name next to paper [LM/TR/Rainbow]
 - first come first serve!
 - only one T/R and one W/F student per article
 - Don't pick a paper randomly

Slot	Day 4 (T/R)	Day 6 (T/R)	Day 4 (W/F)	Day 6 (W/F)
1				
2				
3				
4				
5				
6				

"insert"
"fragment"

dCas9

"vector"

"backbone"

p_LtetO-1

How is DNA engineered?

PCR amplification of DNA:

-polymerase chain reaction-specific primers to the gene of interest

restriction enzymes endonucleases sticky ends (or blunt ends)

• ligation:

ligase: seal backbone, phosphodiester bond

How do you design primers? all primers 5' to 3'

Primer design guidelines

- Length
 - 17-28 base pairs
 - long enough to be specific
 - short enough so Tm no so high GC content
- - **-** 40-60%
 - GC clamp at ends

AT=2, GC=3; GC more stable

- T_m(primer)
 - < 65 °C
- **Avoid Secondary structures**
 - hairpins
 - complementation w/i primer sequence
- Avoid repetitive sequences
 - di-nucleotides 4 (ex. ATATAT)
 - runs > 4 bp (ex. GATGGGGG)

Using PCR to generate *dCas9* flanked by restriction enzyme recognition sites

3 major steps in the PCR cycle: which temperature and why?

- Melt
 - 95°C
 - dsDNA denatures
- Anneal
 - T_m(primer) =1/2 primers annealed to target
 - $-T_{anneal} \sim T_{m}(primer) 5^{\circ}C$
- Extend
 - 72°C (for Taq)
 - 1 min / 1000 bases

- Template DNA
 - dCas9 gene
- Primers
 - specific match to dCas9
 - option to add bases, e.g.
 endonuclease recognition
 sequence

My favorite PCR animation..

learn.genetics.utah.edu

Digestion: dCas9 insert and plasmid backbone

Ligation: dCas9 insert and plasmid backbone after digestion

Confirmation digest considerations

- Do you have access to the enzymes?
- Are the two enzymes compatible?
- Are fragments easily distinguished on an agarose gel?

Today in lab

- 1. Reproduce in silico (in Benchling) the cloning of pdCas9
 - design primers that would amplify the gene dCas9
 - depict PCR amplification product
 - digestion of dCAS9 PCR product and vector by restriction enzymes
 - ligation of insert and vector ** at 2:30pm we will all work through this calculation together
- 2. Set up confirmation digests of pdCas9 for agarose gel electrophoresis
 - choose restriction enzymes for diagnostic digest
 - calculate volumes of digest components
 - "set-up" digest and leave overnight at 37°C