Module 2: Manipulating Metabolism

CRISPR: adaptive immunity

10/24/17

Why communicate your science?

Why communicate your science?

Discovery of repeat sequences in archaea

¹⁹⁹³ While studying non-related anomaly in DNA fragments, identified multiple copies of
30 base repeats separated by
36 base spacers

Francis Mojica

- Found similar repeats in related organisms
 Other work reported repeat sequences in *E. coli*
- ²⁰⁰⁰ Repeat loci identified in 20 microbes
- ²⁰⁰³ Spacer sequence from *E. coli* matched to P1 phage

Proposed role for repeat sequences

- ²⁰⁰³ 88/4500 spacer sequences similar to phage
 2/3 matched phage known to infect host microbe
- 2005 Y. pestis spacer sequences similar to prophage
 present with genome of strains
 - New spacers present at the 'front' end of loci

MICROBIOLOGY Publishing high-quality research since 1947 C. Pourcel,¹ G. Salvignol¹ and G. Vergnaud^{1,2}

²⁰⁰⁵ Speculated that transcripts from spacers worked via anti-sense RNA inhibition

Alexander Bolotin, Benoit Quinquis, Alexei Sorokin and S. Dusko Ehrlich

Publishing high-quality research since 1947

Evidence of adaptive immunity

- ²⁰⁰⁴ Correlation between spacers and phage resistance in *Streptococcus thermophilus*
- ²⁰⁰⁷ Genetic selections used to isolate phageresistant *S. thermophilus*
 - Strains carried phage sequences at repeat loci
 - Insertion of multiple spacers correlated with increased resistance
- ²⁰⁰⁷ Phage with mutations in corresponding spacer sequence able to infect microbial host

Rodolphe Barrangou¹, Christophe Fremaux², Hélène Deveau³, Melissa Richards¹, Patrick Boyaval², Sylvain Moineau³, Dennis A. Romero¹, Philippe Horvath^{2,*}

Discovery of genes associated with repeats

- ²⁰⁰⁰ Genes identified in the immediate vicinity of repeat sequences
 - Assumed to be related to spacer function
 - Hypothesized roles: gene regulation, replicon partitioning, DNA repair, etc.
- ²⁰⁰⁷ Cas7 required in acquisition of resistance, but
 not in resisting phage attack
- ²⁰⁰⁷ Cas9 required for resistance
 - Contains two nuclease motifs

CRISPR loci components

- <u>Clustered Regularly Interspaced Short</u>
 <u>Palindromic Repeats</u> (CRISPR)
 - Repeats are roughly perfect, palindromic sequences
 - Spacers correspond to phage sequences
- <u>CRISPR-as</u>sociated (Cas) genes

Function of CRISPR RNA (crRNA)

- Precursor RNA transcribed from CRISPR loci is cleaved into crRNAs by RNase III
 - Cleaved sequences start with last 8 bp of repeat
 (5' handle), followed by complete spacer, end with first bp of repeat (3' handle that forms hairpin)
 - Cas9 required for primary processing
 - Binds / positions molecules

Function of *trans*-activating CRISPR RNA (tracrRNA)

- Third most abundant type of transcript
- Encoded by sequence immediately adjacent to CRISPR loci
 - 25 bp of near-perfect complementarity to repeats

DNA cleavage mediated by Cas9 with crRNA and tracrRNA

- crRNA / tracrRNA complex promotes structural change in Cas9
 - Formation of central channel that binds DNA
- Cas9 / RNA scan DNA for crRNA target (PAM)
 Bind target sequence to enable strand displacement
- Cas9 cleaves DNA via single blunt cut

Acquisition of immunity

- Phage DNA recognized and fragmented
 Possible synergy with restriction enzyme system
- Suitable spacers selected by detection of protospacer adjacent motif (PAM)
- Spacer inserted into CRISPR loci by Cas1/Cas2
 - Leader end nicked for insertion
 - PAM-dependent orientation

Taken together, ...

Other roles for CRISPR system

- Group behavior in *Myxococcus xanthus* Disruption of *cas7, cas5* decreases sporulation
- Virulence in *Campylobacter jejuni*
 - Expression of cas9 in CRISPR- strain increases virulence
 - Absence of *cas9* in CRISPR+ strain increases swarming, decreases cytotoxicity
- DNA repair in *E. coli*
 - Deletion of *cas1* increases sensitivity to DNA damaging agents

In the *laboratory*...

Journal club presentations at 1p in 16-336

"Welcome to Journal Club. The first rule of Journal Club is: you practice. The second rule of Journal Club is: you practice even more." - Former 109er

Journal club presentation notes

- Speakers
 - Please arrive early, if possible, to check the formatting of your slides
 - Laser pointer, slide changer, timer available for use
- Audience members
 - Please arrive on time
 - Enjoy snacks quietly and no refills during the presentations

How can I overcome my fear of public speaking?

- 1. Know your topic
- 2. Get organized
- 3. Practice, practice, practice
- 4. Visualize success
- 5. Deep breathing
- 6. Get support

Copyright 2002 by Randy Glasbergen. www.glasbergen.com

"Fear of public speaking is quite common. If dressing up as Speaker Man makes you feel more confident, then so be it."

Put on your capes!

