M1D1: Generate scFv library

1. Prelab discussion

2. In silico mutagenesis PCR

- 3. In silico yeast transformation
- 4. Orientation quiz @ 3:30pm

We couldn't afford one of those cool PCR robots, so we just got an undergrad and a cardboard box.

Major assignments for Mod1

- Data summary (15%)
 - In a team
 - Draft due 3/24, final revision due 4/4
 - Format: Bullet points, .PPTX
- Mini-presentation (5%)
 - Individual, submit video via gmail
 - Due 3/28 by 10pm
- Lab quizzes (5% collectively)
 - In a team
 - Due 4pm day of lab, submit on Stellar
- Notebook (5% collectively)
 - Due 3/17 at 10pm, graded by Jeff
- Blog (part of 5% Participation)
 - Due 3/29 at 10pm

Experimental goals for Mod1

Overall research goal: Identify and characterize an antibody fragment (scFv) that shows improved binding to the antigen, lysozyme.

1. Using a parental clone of a **single chain variable fragment (scFv)** known to bind lysozyme, generate a library of mutant scFv clones

2. Screen that library to identify lysozyme-specific scFv sequences that might bind lysozyme better

Characterize binding properties of mutated lysozyme-specific scFv antibodies

Overview of Mod1 experiments

Research goal: Identify and characterize an antibody fragment (scFv) that shows improved binding to the antigen, lysozyme.

Lysozyme is the target for the scFv you will study

- Antimicrobial enzyme produced by animals
 - Part of the innate immune system, present in tears and mucosal membranes

- Catalyzes the breakdown of bacterial cell membranes
 - Glycoside hydrolase that hydrolyzes 1, 4beta linkages in peptidoglycan

Engineering antibodies: Generating the library

- scFv sequence for antibody of interest is mutated in effort to improve affinity or specificity for target
 - Error prone PCR

Engineering antibodies: Generating the library

DNA sequence amplification: Polymerase Chain Reaction

Amplification – PCR reagents and conditions

Error-prone PCR using 8-oxo-dGTP

dNTPs (deoxy-nucleoside triphosphate)

- dTTP
- dATP
- dCTP
- dGTP

Error-prone PCR generates scFv mutants

Gel purify and amplify those mutants for further cloning

Insert mutated scFvs into new plasmid backbone for yeast expression

Restriction enzyme digestion prepares plasmid backbone for transformation

- many restriction enzymes function as homodimers
- binds palindromic sequences
- cleaves backbone

pCTcon2 vector

Transformation of DNA into yeast: Electroporation

Electrical pulse creates temporary pore in membrane

What should go in your notebook?

Laboratory notebook entry component:	Points:		
	Complete	Partial	Missin
ate of experiment (include Module#/Day#) and Title for experiment	1	0.5	0
ypothesis or goal / purpose	2	1	0
rotocols (link to appropriate wiki sections)	1	0.5	0
nswering questions embedded in wiki sections	5	3	0
bservations from demonstrations and video tutorials	3	2	0
Visual details			
Qualitative information			
Raw data			
ata analysis	3	2	0
Calculations			
Graphs and Tables			
ummary and interpretation of data	3	2	0
What did you learn?			
How does this information fit into the larger scope of the project?	•		
nformation is clear	2	1	0
	_	2	0

Note:

- * This rubric is used to grade the notebook at the end of each module
- * Notebook check ins are for participation and due by 10pm after each lab

How should you format your notebook?

M1D1: In silico cloning and confirmation digest of protein expression vector

THURSDAY, 2/8

Hypothesis or goal:

What are you testing and what do you expect of your results?

Protocols: [include link to wiki]

Part 2: Construct pRSETb_FKBP12 in silico

- Include all work / notes / images / sequences generated.
- · Be sure to note any interesting observations or protocol changes!

Part 3: Confirmation digest

- · Include completed table with volumes.
- Include calculations.
- Be sure to note any interesting observations or protocol changes!

Summary and interpretations:

What, if any, conclusions can be made and what does this prepare you to do next?

For Today:

- Work through the wiki exercises with your partner
- Be in breakout room at 3:30pm to take orientation quiz
 - Turn in completed quiz to Stellar by 4pm

For M1D2:

- Create a Benchling template to use for future notebook entries
- Read a paper linked on the wiki and prepare for an in class discussion

Yeast surface display for screening combinatorial polypeptide libraries