M2D8: Measure fermentation products

- 1. Quiz
- 2. Pre-lab
- 3. Measure OD of your bacteria
- 4. Measure fermentation products (acetate) in the supernatant
- 5. Start data analysis

GRADE M2D2 Notebook

Major assignments for M2

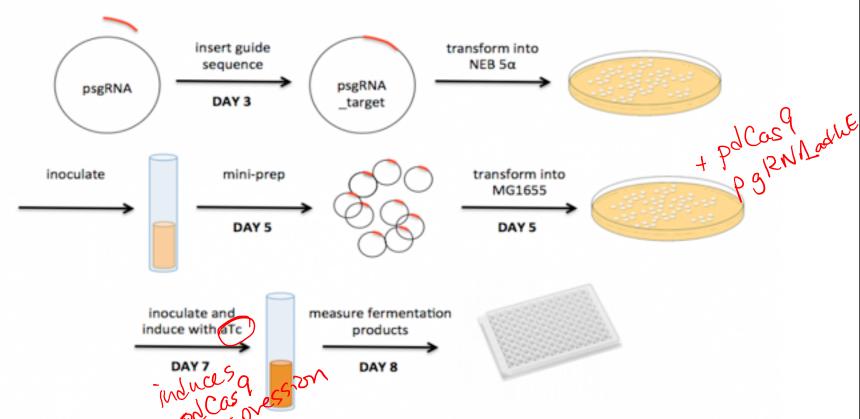
- **Research Article**
 - Due by 10pm on Mon., November 12th

Research Article content

- Title 1. Abstract
- 3.
- Introduction
- 4. Materials and Methods
- 5. Figures and Results
- 6. Discussion 7. References
- 🖟ab notebook, specifically M2D2 due 10pm, 11/🦻
- Blog post for Mod 2 due 10pm, 11/13

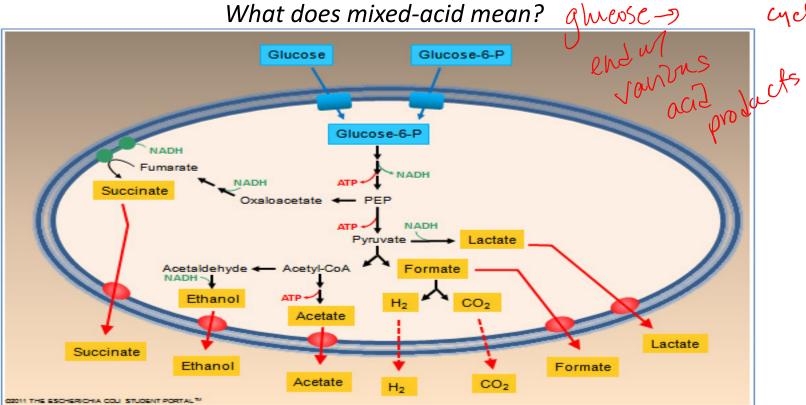
Extra office hours

11/10 (Sat): 1-3 pm, 56-302

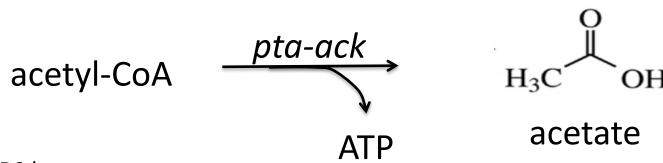

11/11 (Sun): 2-7 pm, 56-302

Regular office hours

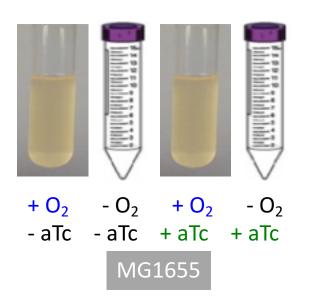
- Noreen: Mon. 2-5pm (16-317)
- Leslie: Th 2-3pm, Fr 12-1pm (56-341c)
- Josephine: W 12-1pm, Fr 2-3pm (56-341c)
- Email us to schedule a different time

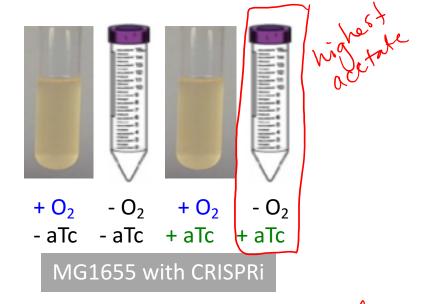

The research article is your most formal writing assignment. Use proper formatting for references, make neat figures, don't include images from lecture/prelab slides or wiki, and pay attention to guidelines on the wiki.

M2 experimental overview


Name your target gRNA plasmid: pgRNA_ _ adhb

E. colinfermentation pathway (TCA eycle) city card cycle cycle

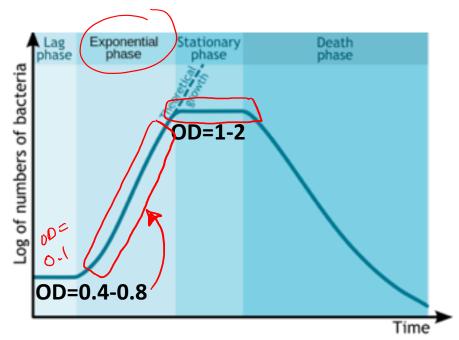



Production of acetate

- Acetates used in production of polymers
- pta-ack expressed constitutively
 - Aerobically grown cells produce negligible amounts of other fermentation products

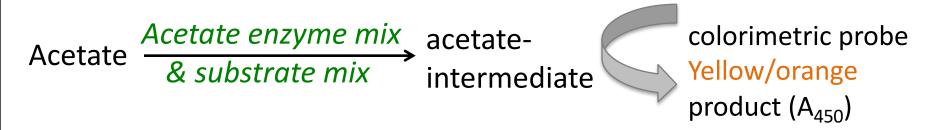
Experimental conditions: mixed-acid fermentation and pdCas9 induction

Normalize for Cell mucher

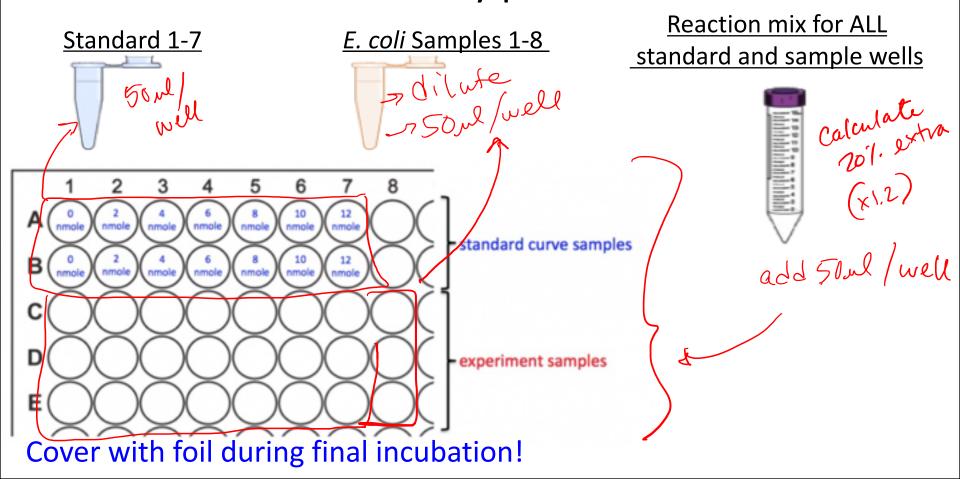

by measuring 0.0. (ortical nevert

Measure *E. coli* (MG1655) concentration by optical density

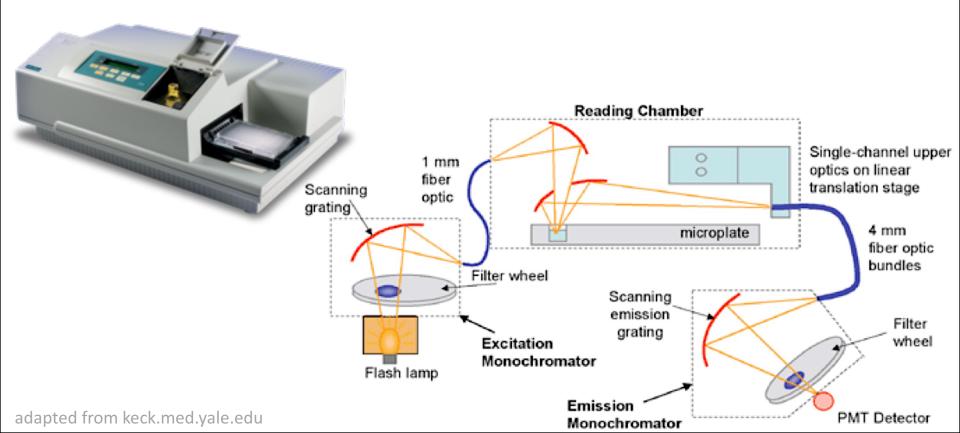
- •Optical Density (O.D.) ≠ absorbance
- Measure of light scattering
 - -E. coli yellowish, don't absorb
 - 600nm (orange)
- -600nm is safer than UV (UV~300nm)


for DNA in E. coli

 Measuring turbidity rather than absorption (relates to number of cells)


*You will measure a life dilution of your culture—remember this for your analysis!

The acetate colorimetric assay is also (very!) proprietary



- Abcam ab204719 colorimetric acetate assay kit:
 - Acetate assay buffer
 - Acetate enzyme mix
 - Acetate substrate mix
 - Acetate probe
 - Acetate standard

Acetate colorimetric assay procedure

Microplate reader measures absorbance of individual wells at a specific wavelength

You must compare team data vs. class data

Please upload Excel spreadsheet with your ODs and raw absorbance readings to Class Data page **TODAY**

T/R [edit]

Team	Ethanol (E) or Acetate (A)	Gene targeted by CRISPRI gRNA	gRNA (DNA) sequence (without tag at 3' end)	Locus targeted (eg. beginning of gene, putative promoter, -35 region)	Target template or nontemplate strand	Colorimetric Assay Results
TR red	E	pta	TGCGCCCGATCAGACTACGACTATC	Middle of the operan	Non-template	File:TRRed ethanol rawdata.xtsx
TR orange	E	ldhA	gftgcaggtacticttglogt	32 bps downstream from start of gene	Template Strand	File:TROrange ethanol rawdata.xisx
TR green	A	adhE	TACTAAAAAAGTTTAACATTATCA	locus targeted: -50 upstream (promoter)	Template strand	File:TRGreen acetale rawdata.xisx
TR pink	A	Citrate Synthase (gltA)	tgagtffgcfffgtalcagccat	Beginning of gene	Non-template Strand	File:TRPink acetate rawdata.xisx
TR purple	A	ldhA	TAGTAGCTTAAATGTGATTCAACAT	Locus targeted: -40 upstream region (promoter)	Non-template strand	File:TRPurple acetate rawdata.xlsx

W/F Tedit

Team	Ethanol (E) or Acetate (A)	Gene targeted by CRISPRI gRNA	gRNA (DNA) sequence (without tag at 3" end)		Target template or nontemplate strand	
WF yellow	A	adhE	ATTCGAGCAGATGATTTACTAAAAA	locus targeted: -34 upstream; promoter	template strand	Raw data
WF green	Acetate	adhE	TTACTAAAAAAGTTTAACATTATCA	locus targeted: -35 upstream (promoter)	template strand	Raw data
WF blue	A	adhE	TTCGAGCAGATGATTTACTAAA	locus targeted: -65 upstream (promoter)	Template Strand	Raw data

team data PLUS at least teams other

Today in lab...

- 1. Retrieve cultures from 37°C incubator and measure optical density (O.D.)
- 2. Prepare supernatant samples
- 3. Prepare standard curve
- 4. Combine sample/standards with reaction mix, incubate
- 5. Measure absorbance on plate reader (4th floor)
- 6. Calculate fermentation product concentration from assay results
- 7. Email me (lesliemm@mit.edu) an Excel spreadsheet with your ODs (x10) and absorbance readings