M3D5: Battery assembly and testing

- 1. LAST Quiz
- 2. Prelab Discussion
- 3. Battery assembly demo: Belcher lab
- 4. Refine Research Proposal and draft figures for mini-report

The final countdown...

- No lecture Thursday
- M3 Lab notebook grade
 - M3D3 graded specifically, due 10pm tomorrow (Friday is okay)
- M3 research proposal
 - slides due on Stellar Thursday, December 6th at 1pm
 - bring one print-out of your slides to 16-336
- M3 mini-report
 - due on Stellar at 10pm Monday, December 10th
 - 3 sections: Background & Approach, Results & Interpretation of Data, and Contextualizing Results & Future Work
- Blog posts
 - Final blog post: Friday, December 7th at 10pm (Only 3 on-time posts are needed for full credit)

Figures: TEM images

- At low magnification:
 - extent of biomineralization
 - distribution of gold NPs
 - overall structure & density
 - uniformity

- At high magnification:
 - size of gold nanoparticles
 - lattice of gold atoms
 - amorphous vs. crystalline Fe(III)PO₄
 - diameter of nanowires

Figures: EDX elemental mapping

- Expected: Fe, P, O, Au, (Cu)
 - contamination?
 - stoichiometric ratios?

keV (energy)

Today: Battery assembly

- i. Small Gasket + Washer
- ii. Lithium (Anode)
- iii. Electrolyte (*LiPF*₆)
- iv. Separator
- v. Phage-Fe(III)PO₄ (Cathode)
- vi. Steel Spacer

vii. Large Gasket

Measuring battery capacity

- Theoretical capacity of Fe(II)PO4 (crystalline) battery~ 178 mAh/g
- Measure the actual capacity of your batteries using galvanostat
 - Keep current constant (- 0.03 mA, record time to discharge)
 - Record voltage (ideally constant) as charge (capacity) stored in battery fluctuates (drops during discharge)

Calculate actual battery capacity by dividing by mass of active material 5 active material

	~	D	<u> </u>	0			Ł
610	Index	Mode	Period	A			l
611	6	Discharge CI	5:59:31				
612	Index	TestTime	Voltage/V	Current/m/	Capacity/m	State	
613	595	9:43:26	3.7714	-0.0319	0	D_CC	
614	596	9:43:41	3.7212	-0.0319	0.0001	D_CC	
615	597	9:43:58	3.6654	-0.0319	0.0003	D_CC	
616	598	9:44:16	3.6111	-0.0319	0.0004	D_CC	
617	599	9:44:37	3.5596	-0.0319	0.0006	D_CC	
618	600	9:45:02	3.5073	-0.0319	0.0009	D_CC	
619	601	9:45:33	3.4552	-0.0319	0.0011	D_CC	
620	602	9:46:15	3.4049	-0.0319	0.0015	D_CC	
621	603	9:47:15	3.3581	-0.0319	0.002	D_CC	
622	604	9:48:15	3.3287	-0.0319	0.0026	D_CC	
623	605	9:49:15	3.3057	-0.0319	0.0031	D_CC	
624	606	9:50:15	3.2878	-0.0319	0.0036	D_CC	
625	607	9:51:15	3.2735	-0.0319	0.0042	D_CC	
626	608	9:52:15	3.2583	-0.0319	0.0047	D_CC	
627	609	9:53:15	3.2468	-0.0319	0.0052	D_CC	
628	610	9:54:15	3.2354	-0.0319	0.0058	D_CC	
629	611	9:55:15	3.2239	-0.0319	0.0063	D_CC	
630	612	9:56:15	3.2152	-0.0319	0.0068	D_CC	
631	613	9:57:15	3.2065	-0.0319	0.0074	B_CC	

Discharge capacity example:

$$70.1117 \text{ mAh} \times \frac{1000 \text{ mg}}{9} = 105 \text{ mAh}$$

 $(1.97 \text{ mg} \neq 0.54) \qquad 9 \qquad 9$

In report: Report all charge and discharge capacities

• On wiki: Post best (highest) discharge capacity only

Figure: Voltage profile (discharge)

D

B

Mode

Period

А

610 Index

E

From Excel data, plot voltage vs capacity

Today in lab...

- Battery Assembly in Belcher lab—Thank you to Jifa and Shuya!
 - 1st group: Red, Orange, Purple
 - 2nd group: Pink, Green
- Capacity calculations in lab: How does the type of NP-phage affect battery capacity?
 - Add battery details to the wiki today!
- Get TEM & EDX images before you leave
- Use your time wisely:
 - Improve your research proposal slides
 - Practice your presentation
 - Ask for feedback