Lecture Slides for Tuesday April 7th

11:05 AM EDT by Zoom

https://mit.zoom.us/j/348659452

For audio you can use your computer or call:

US: +1 646 558 8656 or +1 669 900 6833

Meeting ID: 348 659 452

International Numbers:

https://mit.zoom.us/u/adLEbsadSS

Note: class will be recorded and posted for later viewing.

Two types of questions we might ask about expression data:

What are the biological consequences of the expression changes?

What categories of genes change in expression?

What causes these genes to change in expression?

Does a common transcription factor regulate them?

Outline

- Evaluating the statistical significance of an annotation
 - Hypergeometric distribution:
 - The null hypothesis:
 - Aggregate score statistics
 - Multiple hypotheses
 - Healthy dose of skepticism
- Applications:
 - Function of differentially expressed genes
 - Identity of transcriptional regulators
 - Known binding sites
 - Predicted binding site

Recall our setting last time: Interpreting transcriptional results

GO Terms

What do the differentially expressed genes do?

Let's say 10% of the differentially expressed genes have annotation A. Should we investigate this annotation?

- What if this annotation contains 10% of all genes in the genome?
- What if this annotation contains 25% of all genes in the genome?

Recall our setting last time: Interpreting transcriptional results

What do the differentially expressed genes do?

Do any annotations occur more often than expected by chance?

To answer this question, we need a <u>null</u> <u>hypothesis</u>.

The simplest <u>null hypothesis</u> is that the occurrence of an annotation is independent of the experiment ... it could have occurred by chance.

Consider two annotations: Nucleoplasm and paraspeckles

The significance depends on the size of the lists.

Very few genes are found in paraspeckles.

- If a lot of our differentially expressed genes have this rare annotation, it is worth exploring.
- Finding lots of nuclear genes is less interesting.

To determine statistical significance, we need to specify a null-model

Empirical approach:

Find the distribution of observed "green genes" by random sampling

Is this overlap significant?

CDF of the hypergeometric distribution measures the probability of observing at least *n*

GSEA uses a Kolmogorov-Smirnov statistic to compare the distributions of t-statistics

Irizarry, et al. argue for X² and z-test

Gene set enrichment analysis made simple. (2009) Stat Methods Med Res http://www.bepress.com/jhubiostat/paper185/

http://www.broadinstitute.org/gsea/

Testing Multiple Hypotheses

- Example:
- Filter GO terms using a p<0.01
- Assume there are 30,000 GO terms
- How many GO terms will look significant by chance?

Testing Multiple Hypotheses

- Example: Filter GO terms using a p<0.01
- By definition, the null-hypothesis has a 1% probability of being correct <u>for each</u> <u>test.</u>
- There are roughly 30,000 terms in GO.
- At this level, we expect roughly 300 false positives!

Multiple Hypotheses

- A simple solution: require that the p-value be small enough to reduce the false positives to the desired level.
- This is called the Bonferroni correction.
- In our case, we would only accept terms with a

$$p \leq \frac{0.01}{30,000} = \frac{desired\ threshold}{number\ of\ tests}$$

- Since our tests are not all independent, this is very conservative, and will miss many true positives
- More sophisticated approaches exist, such as controlling the "false discovery rate".

Outline

- Evaluating the statistical significance of an annotation
 - Hypergeometric distribution:
 - The null hypothesis:
 - Aggregate score statistics
 - Multiple hypotheses
 - Healthy dose of skepticism
- Applications:
 - Function of differentially expressed genes
 - Identity of transcriptional regulators
 - Known binding sites
 - Predicted binding site

Downloads

Tools

Documentation

Estrogen receptor

About

Contact

Projects

✓ Go! Perform an action with this page's selected terms... Select all Clear all **Oualifier** Evidence Accession, Term Ontology ☐ GO:0030520 : estrogen receptor signaling pathway 41 gene products biological NAS view in tree process G0:0043526 67 gene products biological IEA neuroprotection Not just the view in tree process With Ensembl:ENSRNOP00000026350 obvious categories GO:0048386: positive regulation of retinoic acid receptor signaling pathway 9 gene products biological IDA view in tree process GO:0045885 : positive regulation of survival gene product expression 56 gene products biological IEA With Ensembl:ENSRNOP00000026350 view in tree process GO:0006355: regulation of transcription, DNA-dependent 16904 gene products biological NAS view in tree process 354 gene products biological G0:0043627: response to estrogen stimulus IEA view in tree process With Ensembl:ENSRNOP00000026350 ☐ GO:0007165: signal transduction 18490 gene products biological TAS view in tree process TAS

GO Evidence Code Decision Tree

data to determine if any predictions may be made based on the sequence.

Outline

- Evaluating the statistical significance of an annotation
 - Hypergeometric distribution:
 - The null hypothesis:
 - Aggregate score statistics
 - Multiple hypotheses
 - Healthy dose of skepticism
- Applications:
 - Function of differentially expressed genes
 - Identity of transcriptional regulators
 - Known binding sites
 - Predicted binding site

Two types of questions we might ask about expression data:

What are the biological consequences of the expression changes?

What categories of genes change in expression?

What causes these genes to change in expression?

Does a common transcription factor regulate them?

Sources of evidence for regulators

We can apply the same statistical tests to both sources of binding sites:

Experiments like ChIP-Seq tell us about the binding of individual proteins in specific experimental conditions

Predictions based on sequence motifs tell us about potential binding in any experimental conditions

ChIP-Seq measures DNA binding in vivo for one protein of interest

Chromosomal Position

Crosslink protein to binding sites in living cells

Harvest cells and fragment DNA

Enrich for protein-bound DNA fragments with antibodies

Sequence

Align to reference genome

Large databases of ChIP-Seq exist

Table 1.
Comparison of databases that are based on ChIP-seq data

Database, URL	Source of human and mouse data	Number of samples (TF-related)*	Number of TFs
ChIPBase (http://rna.sysu.edu.cn /chipbase)	GEO, ENCODE	total 3549 human 2498 mouse 1036 rat 15	252 TFs and non-TFs for 10 species
Cistrome DB (http://dc2.cistrome.org/#/)	GEO, SRA, ENA, ENCODE	total 10 276 (TF+non-TF) human 5774 mouse 4502 rat 0	260 TFs and non-TFs
ENCODE (https://www.encodeproject.org)	ENCODE	total 1448 human 1254 mouse 194 rat 0	295 TFs and non-TFs for human, 52 TFs and non-TFs for mouse
Factorbook (http://www.factorbook.org)	ENCODE	total 1007 human 837 mouse 170 rat 0	167 TFs, co-factors and chromatin remodeling factors for human, 51—for mouse
GTRD (http://gtrd.biouml.org)	GEO, SRA, ENCODE	total 5078 human 2955 mouse 2107 rat 16	476 human and 257 mouse sequence specific TFs, corresponding to 542 TFClass classes.
ChIP-Atlas (http://chip-atlas.org)	SRA	total 10 774 human 5914 mouse 4860 rat 0	699 human and 502 mouse TFs and others.
GeneProf (http://www.geneprof.org)	SRA, ENCODE, literature	total 1692 human 693 mouse 999 rat 0	133 human and 131 mouse TFs
NGS-QC (http://www.ngs-qc.org)	GEO	total 6672 human 4234 mouse 2438 rat 0	unknown

Table taken from: "GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments" Ivan Yevshin Ruslan Sharipov Tagir Valeev Alexander Kel Fedor Kolpakov Nucleic Acids Research, Volume 45, Issue D1, January 2017, Pages D61–D67, https://doi.org/10.1093/nar/gkw951

Sequence Motifs are Used to Predict Binding

_GCTGGT

Motifs are quantitative models for the DNA-binding specificity of proteins.

If many of the sequences match a motif, we can hypothesize that the corresponding protein binds under some condition.

Sequence Motifs Represent the Specificity of a Protein

Biophysics determines probability of binding

Some base pairs are more critical than others

The odds ratio is used to find the most likely binding sites

- The raw probabilities can be very small.
- Say the most preferred base at each of 10 positions has p=0.8
- What is the probability of the best motif?
 - P(best match) = $(0.8)^10 = 0.1$

The odds ratio is used to find the most likely binding sites

- P(best match) = $(0.8)^10 = 0.1$
- A better question: is it more likely that this sequence is a motif match or not?
- What is the prob of any sequence in a random genome?
 - P(random)=(0.25)^10= 9.5367e-7
- The ratio of these two probabilities is called an

odds ratio =
$$\frac{Model_prob}{Background_prob}$$
 ~10^5

The odds ratio is used to find the most likely binding sites

Odds ratio
$$\frac{Model_prob}{Background_prob} = \prod_{i=1}^{w} \frac{p_{model}(b,i)}{p_{background}(b)} = \prod_{i=1}^{w} odds(b,i)$$

The odds ratio quantitatively compares two hypotheses.

If the odds ratio is above an arbitrary threshold, we consider it a match

Usually each base is modeled as being independent of the others

Motifs can be derived from known binding sites:

If I had found these sites using ChIP-Seq, how would I describe the specificity?

TGACTCC
TGACTCA
TGACAAA
TGACTCA
TTACACA
TGACTAA
TGACTAA
TGACTCA
TGACTCA
TGACTCA

If I had found
these sites using
ChIP-Seq, how
would I describe
the specificity?

TGACTCC

TGACTCA

TGACAA

TGACTCA

TTACACA

TGACTAA

TGACTAA

TGACTCA

TGACTCA

TGACTCA

Position Frequency Matrix (PFM)

A:	0	0	10	0	2	3	9
C:	0	0	0	10	0	7	1
G:	0	9	0	0	0	0	0
T:	10	1	0	0	8	0	0

If I had found

TGACTCA
TGACTCA
TGACAAA
TGACAAA
TGACTCA
TGACTCA
TGACTCA
TTACACA
TGACTAA
Would I describe
TGACTCA
TGACTCA
TGACTCA
TGACTCA
TGACTCA
TGACTCA

Position Frequency Matrix (PFM)

A:	0	0	10	0	2	3	9
C:	0	0	0	10	0	7	1
G:	0	9	0	0	0	0	0
T:	10	1	0	0	8	0	0

TGACTCA

Position Probability Matrix (PPM)

A:	0.000	0.000	1.000	0.000	0.200	0.300	0.900
C:	0.000	0.000	0.000	1.000	0.000	0.700	0.100
G:	0.000	0.900	0.000	0.000	0.000	0.000	0.000
T:	1.000	0.100	0.000	0.000	0.800	0.000	0.000

Define motif model

Define background model

Compare the 34 models

Is a region a valid binding site?

- Steps:
 - 1. Define a mathematical model for matching sequences $Model_prob = \prod_{i=1}^{w} p_{model}(b, i)$

```
Position Probability Matrix (PPM)
```

```
0.000
              0.000
                       1.000
                                 0.000
                                           0.200
                                                     0.300
                                                              0.900
A:
             0.000 |
                      0.000
                                 1.000
    0.000 |
                                           0.000 |
                                                     0.700
                                                              0.100
G:
   0.000 |
             0.900 \mid 0.000
                                 0.000
                                           0.000 |
                                                     0.000
                                                              0.000
    1.000
             0.100
                       0.000
                                 0.000
                                           0.800
                                                     0.000
                                                              0.000
```

Is a region a valid binding site?

- Steps:
 - 1. Define a mathematical model for matching sequences

$$Model_prob = \prod_{i=1}^{n} p_{model}(b,i)$$

Position Probability Matrix (PPM)

```
0.000
            0.000
                     1.000
                             0.000 |
                                     0.200 |
                                               0.300 |
                                                      0.900
A:
  0.000 | 0.000 | 0.000 |
                             1.000 | 0.000 |
                                               0.700 \mid 0.100
G:
  0.000 | 0.900 | 0.000 |
                             0.000 | 0.000 |
                                               0.000 |
                                                       0.000
   1.000 | 0.100 | 0.000
                             0.000
                                      0.800
                                               0.000
                                                       0.000
```

2. Define a model for sequences that don't match: $P_{background} = 0.25$

Is the sequence more probably a motif or a random genomic region?

- Steps:
 - 3. Quantitatively compare the two hypotheses

$$Model _prob = \prod_{i=1}^{w} p_{model}(b, i)$$

$$Background_prob = \prod_{i=1}^{n} p_{background}(b)$$

Odds ratio

$$\frac{Model_prob}{Background_prob} = \prod_{i=1}^{w} \frac{p_{model}(b,i)}{p_{background}(b)} = \prod_{i=1}^{w} odds(b,i)$$

Motifs are usually represented as the log-odds

$$log\left[\frac{P_{model}}{P_{background}}\right] = log[P_{model}] - log[P_{background}]$$

- The log-odds matrix is often called a:
 - PWM position weight matrix or
 - **PSSM** position-specific scoring matrix
- Taking the log helps avoid problems that computers have with very small numbers
- Rule-of-thumb: 60% of the maximum-possible LLR score is a reasonable threshold for determining a match to a PWM motif

You now have tools to address both types of questions:

Consequences
Consequences
Consequences

What are the biological consequences of the expression changes?

What categories of genes change in expression?

What causes these genes to change in expression?

Does a common transcription factor regulate them?

39