M2D1: Complete in silico cloning of dCas9

expression plasmid

- 1. Prelab
 - 1. M1 Recap
 - 2. In silico cloning
 - 3. Assignment reminders / Data Summary Questions
- 2. In silico cloning
- 3. Set up confirmation digest reaction by 4:30pm

Why test localization & aggregation of TDP-43?

Observation: Aggregates of TDP-43 are present in many neurodegenerative diseases

Hypothesis: Stopping TDP-43 aggregates from forming may prevent neurodegenerative diseases

Why test whether your SMM affects TDP-43 localization at all?

Causes known and unknown

How do we know if our SMM will even make it to the nucleus?

We don't. Our bad?

How do we know if our SMM will even make it to the nucleus?

A lot of science is based in failure modes

Give up and do something else

Mod 2 Research goal

Increase the yield of commercially valuable byproducts in *E.coli* using CRIPSRi technology to target genes involved in mixed-acid fermentation pathway.

Mod 2 Schematic

Create this *in* silico

Double check if this is real

1) Prepare CRISPRi components

1) pdCas9

psgRNA_target of your design

2) Get these components into E.coli

See if your target increases ethanol or acetate

Cloning of pdCas9:

1. PCR amplification of DNA & adding of convenient REnzyme sites:

2. Digestion:

3. Ligation:

PCR amplification of DNA: Primers

- Landing sequence: match to dCas9
- Flap sequence: contains <u>endonuclease</u>
 <u>recognition</u> sequence and <u>junk DNA</u>

Primer design guidelines

forward primer landing

- Length: 17-28 base pairs
- GC content: 40-60%
 - GC has _____ hydrogen bonds; AT has _____ hydrogen bonds
 - GC clamp at ends
- T_m(primer) < 65 °C
- Avoid secondary structures
 - Hairpins [IDT FAQ has a guide here]
 - complementation w/in primer sequence [Try for < 1/3 complementation]
- Avoid repetitive sequences
 - Max of 4 di-nucleotide repeats (ex. ATATAT)
 - Max of 4 bp in a run (ex. GATGGGG)

In silico cloning in SnapGene

- Work through the steps of cloning without the hours of incubations
 - Primer design and PCR amplification of insert
 - Restriction enzyme digest of insert and backbone
 - Ligation of insert into new backbone

Generate plasmid map of dCas9 in new vector

- The plasmid you generate in silico is the same one we generated in the lab
 - Want to test that we generated the correct plasmid

Use a confirmation digest to test correct plasmid construction

- Use 2 restriction enzymes to cut the plasmid
 - Different from REs used to cut insert and backbone
 - One RE cuts only insert
 - One RE cuts only vector
- Can infer correct insertion of insert into backbone
- Considerations when choosing restriction enzymes:
 - Do you have access to the enzymes? [Wiki]
 - Are the two enzymes compatible? [NEB]
 - Are the resulting fragments *easily distinguished* on an agarose gel?

For today

- Complete cloning and generate plasmid map of pdCas9
- Set up confirmation digest of pdCas9 based on plasmid map
 - Begin by 4:30pm
 - Printed maps available at front bench if needed

For M2D2

- Select article for Journal Club
- Sign up on wiki using instructions on the sign up page
 - Only one person per section can sign up for an article
 - First come first serve
- Write summary of why article is interesting, based on abstract and introduction

Mod 2 Due Dates (because we haven't given you enough to think about...)

- Journal Club presentation (15%)
 - Individual
 - Presentations on 3/29 & 3/31
- Research article (20%)
 - Individual
 - due 4/23
- Laboratory quizzes (collectively 5%)
 - M2D4 and M2D7
- Notebook (collectively 5%)
 - one entry will be graded in detail by Christine
- Blog (part of 5% Participation)
 - due 4/1 & 4/25 via Slack channel

(Almost) done with Mod 1!

- Data summary due: Saturday March 12 at 10pm
- Thursday: Becky 5-7p on Zoom
- Friday: Noreen 5-7p on Zoom
- Saturday: Becky 10-12p and Noreen 12-2p, both on Zoom
- Revision (if you want) due: Sunday March
 20 at 10pm

Data Summary Questions?