

One final review...

1. Plasmid containing gene that encodes dCas9

2. Plasmid containing sequence for sgRNA

sgRNA sequence is complementary to target sequence

3. Target sequence

CRISPRi inhibition of gene expression

Block transcription initiation

Transcription factor

SgRNA

SgRNA

Block transcription elongation

Effective for both NT and T strands

Effective only for the NT strand

Promoters enable gene expression by providing a 'landing pad' for RNAP binding

RNA binds to promoter and transcribes downstream genes

Operators block transcription

Activators promote / enhance transcription

The big picture: promoters are complicated!

Transcription factors regulate promoter activity

- Depending on location of binding site, able to activate or repress
- Typically regulate networks of genes in response to environmental / metabolic cues
- E. coli encodes ~270 transcription factors

Transcription factors also bind within genes

- ChIP used to identify sequences bound by RutR
- RutR involved in pyrimidine catabolism

Some thoughts for the laboratory exercise...

• What transcription factor binding sites overlap with your sgRNA target sequence?

• Based on the location of the transcription factor binding site, is is activating or repressing expression of the gene?

• Consider if the transcription factors with binding sites that overlap the sgRNA targets have any effect in the context of your experiment.

How will you present your data?

Success!

Was ethanol yield increased?

• Is CRISPRi system working as expected?

Maybe a success?

Was ethanol yield increased?

Is CRISPRi system working as expected?

Be critical of the data!

- Think about your data from different points of reference
- Consider how to plot your data such that the hypothesis is answered directly

Use class data to support your conclusion(s)

How will you use class data?

• Identify what questions the data can address

Consider which comparisons can support your data / conclusions

Represent the data pool honestly

• Must use at least two additional data sets (no more than three)

What is the take-home message?

 Promoters are complicated and many players are involved in regulation of gene expression

 Know the basics for how activators, operators, and transcription factors regulate transcription

