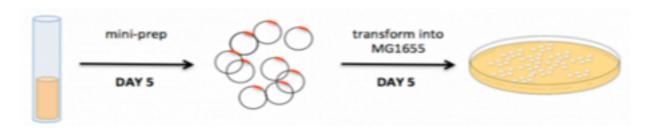
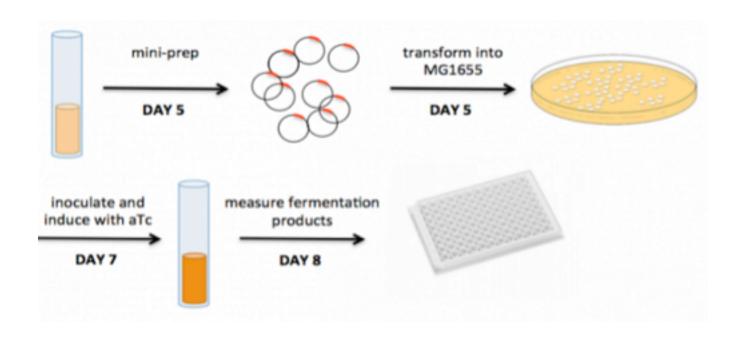

M2D5: Confirm gRNA sequence

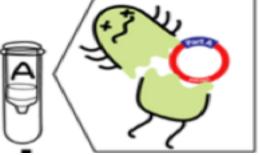

- 1. Quiz
- 2. Pre-lab discussion
- 3. Lab
 - Purify gRNA plasmid (mini-prep)
 - Transform CRISPRi system into MG1655
 - Send pgRNA_target plasmids to be sequenced

Date	Upcoming Event	
Tues (10/30)	Journal Club 2	
Thurs (11/1)	Comm Lab Workshop	
Friday (11/2)	Blogpost due	
Mon (11/12)	M2 Research Article Due	

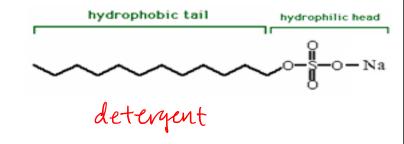
Last time (& while you were away):



Today: confirm psgRNA_target


- 1.) Isolate pgRNA_target from *E. coli* cultures (mini-prep)
- 2.) Co-transform Pd Cas9 & pgRNA_target into MG1655 cells
- 3.) Submit pgRNA_target for sequencing to confirm product

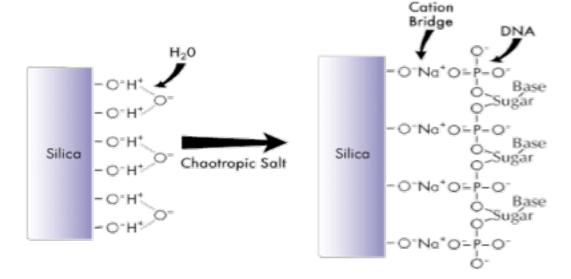
Today: confirm psgRNA_target


Mini-prep pgRNA_target clones

- Goal of mini-prep: purify plasmid
- Strategy:
 - lyse cells to extract DNA
 - Separate DNA from proteins & lipids
 - Separate plasmid DNA from chromosoma DNA
 - Purify and collect plasmid from other soluble factors

Prepare and lyse cells

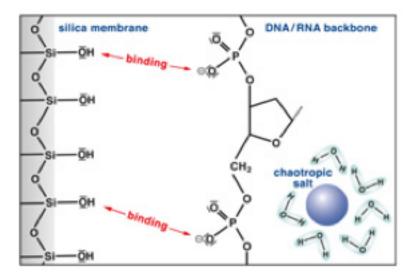
- Prepare cells (P1)
 - Tris/EDTA buffer waters an envelope, blocks DNase
 - Rnase degrades RNA
- Lyse cells (P2)
 - Sodium dodecyl sulfate (SDS)
 - · dissolves lipid membranes
 - · denatures proteins
 - Sodium hydroxide (NaOH)
 - , alkaline lysis
 - · denature DNA

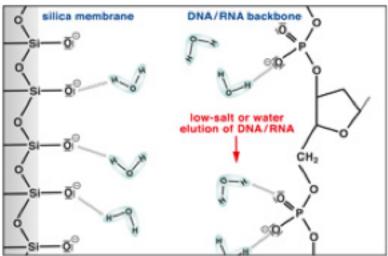

Neutralization (N3)

- Acetic acid / potassium acetate solution
 - Neutralizes pH
 - Converts soluble SDS into insoluble PDS (white fluff)

```
precipitates with  \frac{\text{CH}_3-(\text{CH}_2)_{11}-\text{O}-\text{S}-\text{O}-\text{Na}}{\text{Proteins}} \rightarrow \frac{\text{CH}_3-(\text{CH}_2)_{11}-\text{O}-\text{S}-\text{O}-\text{K}}{\text{O}}
```

- Chaotropic salt
 - facilitates DNA binding to silica
- After centrifugation
 - supernatant: <u>"Plasmid"</u> (and soluble cellular constituents)
 - pellet: PDS, lipids, proteins, chromosomal DNA


Bind DNA to column

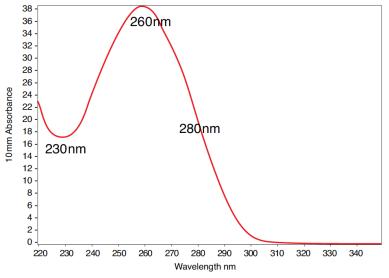


- Washes with PB (isopropanol) and PE (ethanol)
 - remove residual contaminants
 - maintain DNA onto column
- Spin off all ethanol before eluting DNA

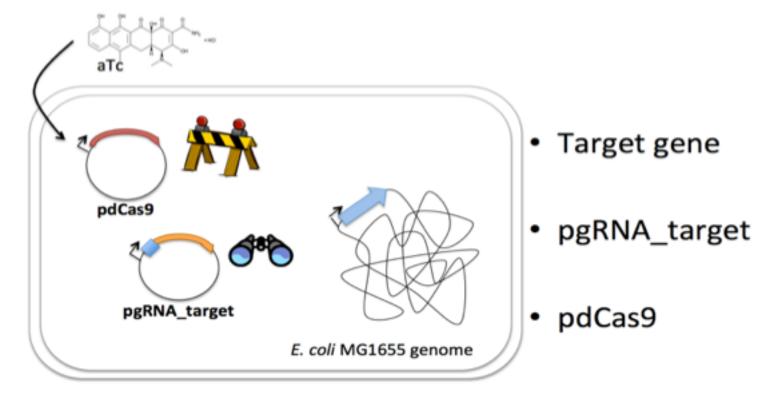
Elute DNA with water (pH 8)

- Water competes DNA off of silica column
- Collect DNA in a new tube

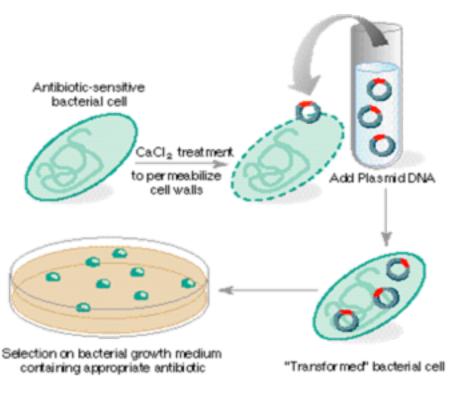
Summary of mini-prep to isolate DNA


	Steps	Contents	Purpose
	Prepare (P1)	Tris/EDTA buffer RNase	Resuspend cells, weaken membrane, EDTA blocks DNase, RNase degrades RNA
	Lyse (P2)	SDS (detergent) NaOH (alkaline lysis)	solubilize proteins, denature DNA
	Neutralize (N3)	Acetic acid, chaotropic salt, potassium acetate	Renature short DNA, precipitate long DNA and protein
	Spin		
	Bind	Silica column	Concentrate and isolate DNA
	Wash (PB, PE)	Isopropanol, ethanol	Remove contaminants
	Elute	Water, pH 8.0	Elute all DNA off column

^{*}Note: All liquid waste should be collected in conical tube, never aspirated

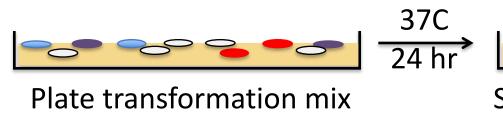

Measure DNA concentration with NanoDrop spectrophotometer

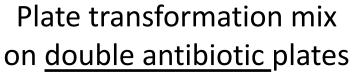
Nucleic acids absorb 260 nm light



Transform CRISPRi system (two plasmids) into MG1655

Heat shock competent cells for

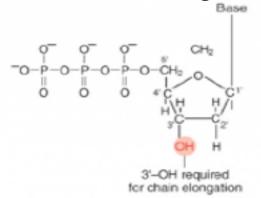

transformation

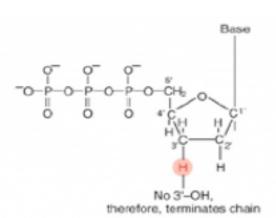


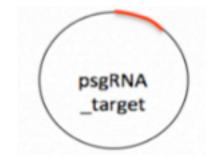
- MG1655 made chemically competent
 by CaCl₂
 - In exponential growth phase
 - $OD_{600} = 0.4-0.8$
 - Ca2+ ions attract both

 DNA backbone and Lipopolysachanide inner
 - Handle very gently, or will lyse
 - on ice all the time, and with chilled solutions, not vortexed
- Heat shock competent cells with plasmids
 - 42°C for 45 sec
 - Potentially alters membrane to allow plasmid entry

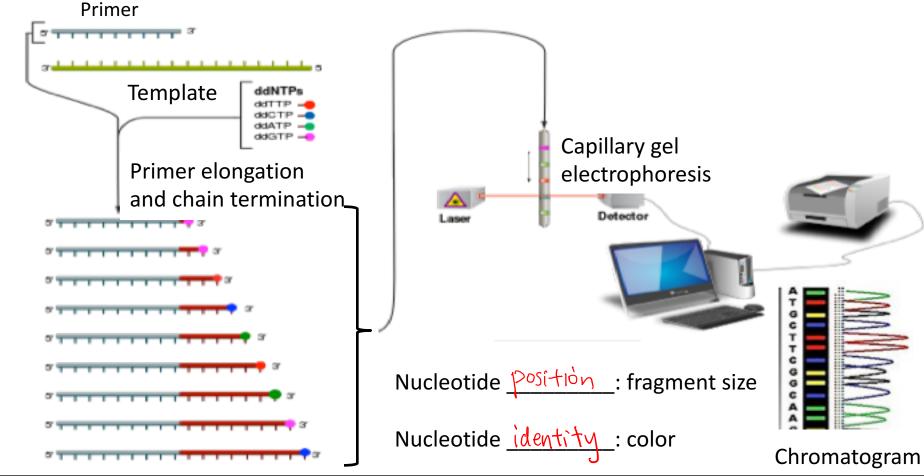
Select for MG1655 with both plasmids using antibiotics


Selecting for transformants that received both plasmids


pdCas9 confers resistance to: Chloramphenicol (cam)


pgRNA confers resistance to: ampicilla (amp)

Use sequencing to determine if we have the intended pgRNA_target


- Diagnostic digests check size
- Sequencing
 - good to have both forward and reverse primers
 - . More coverage (~1 kb)
 - double check
 - di-deoxynucleotides terminate elongation

Sanger sequencing by Genewiz

Tips to write Methods (due M2D7)

- Methods completed individually and included in your Mod2 Research article
 - M2D2 through M2D5 (leave out M2D1)
 - Using the phase "per manufacturers protocol" allowed for Qiagen miniprep kit only (not allowed for other protocols)
 - full primer sequences are reported in methods sections
- Include enough information to replicate the experiment
 - list manufacturers name and location (City, ST)
 - Be concise and clear in your description
- Use subsections with descriptive titles
 - Put in logical order
 - Begin with topic sentence to introduce purpose
- Use clear and concise full sentences
 - NO tables and lists
 - Passive voice expected
- Use the most flexible units
 - Write concentrations (when known) rather than volumes
- Eliminate 20.109 specific details
 - Example "green team gRNA..."
 - Do not include details about tubes and water!
 - Assume reader has some biology experience

Improving your Methods [1]

```
Template DNA (5 µL) and primers were mixed with 20 µL of
```

gRNA_ldhA_F(5'GJ(AG....3')) 2.5X Master Mix in a PCR tube. Water was added to 50 μ L renumbr

Caso handle

and samples put on PCR machine. What conditions?

(98°C for 10 sec...)

Improving your Methods [2]

genotype, jowth phase

A liquid bacteria culture was pelleted and the DNA was purified

using a Qiagen kit. (manufacturer info)

"You may say "used Qiagen Kit" for miniprep only, but be sure to mention elution step (HzO,PH8) as it differs from manufacturer specification.

Improved Methods

[1] PCR amplification of inverse pericam (IPC)

Inverse pericam (IPC) was amplified from a pcDNA3-IPC template (5 ng/uL) with 2 pmol/uL IPC-forward (5' NNN 3') and IPC-reverse (5' NNN 3') primers, using 1X MasterMix (company, city, state/country) and the following thermocycler conditions: initial denaturation at 98°C for 30 s, 25 cycles of amplification (melt at 98°C for 10 s, anneal at 55°C for 30 s, extend at 72°C for 2 min), final extension at 72°C for 2 min.

[2] Amplification of the pRSET-IPC plasmid

The DNA of a 1.5 mL of NEB 5alpha (genotype: $fhuA2 \Delta (argF-lacZ)U169 \ phoA \ glnV44 \Phi 80 \Delta (lacZ)M15$ $gyrA96 \ recA1 \ relA1 \ endA1 \ thi-1 \ hsdR17$) overnight** culture was collected using a QIAquick mini-prep kit (Qiagen, Hilden, Germany) according to the manufacturer's protocol with a final elution in 30 μ L of distilled water pH 8.0.

**grown to saturation (as opposed to exponential growth phase for transformation or induction of expression)