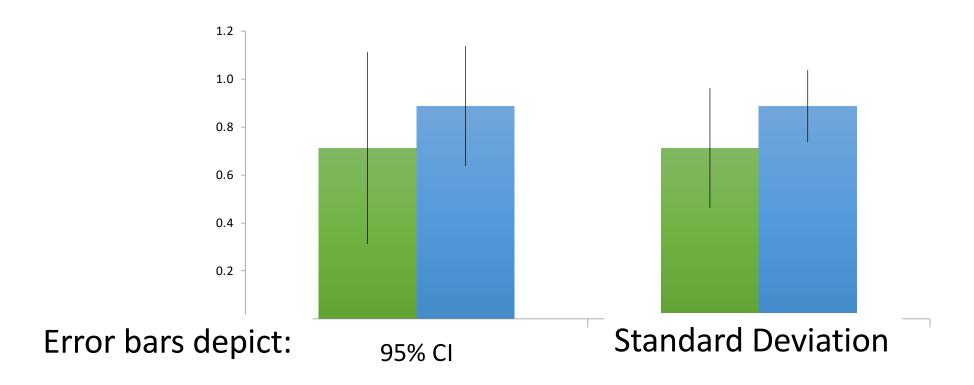

M1D7: Complete data analysis using statistical methods

- 1. Library
 - Howard Silver
- 2. Prelab
 - 1. Statistics
 - 2. Mod 1 Review
- 3. Complete stats analysis on data
- 4. Work on Data Summary

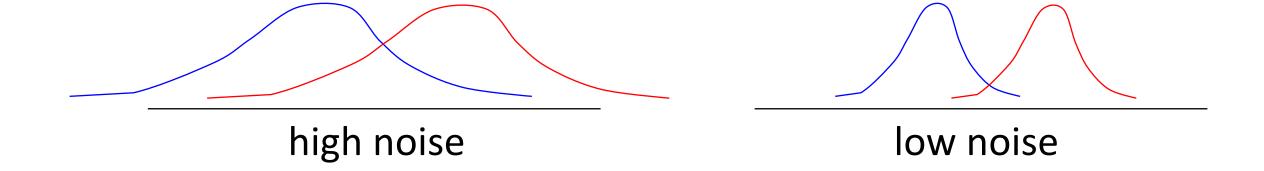


Mod 1 Due Dates

- Data summary (15%)
 - completed in teams and submitted via Stellar
 - draft due 10/4, final revision due 10/14
- Mini-presentation (5%)
 - completed individually and submitted via Gmail: bioeng20.109@gmail.com
 - due 10/11
- Notebook (collectively 5%) Rubric on Wiki
 - Email pdf of M1D4 entry to Aimee at (amoise@mit.edu) by 10pm Friday
- Blog (part of 5% Participation)
 - due 10/5 via Blogspot

Confidence intervals show the variance in the data set

 At 95% confidence interval, there is a 95% chance that the true mean is within the defined range

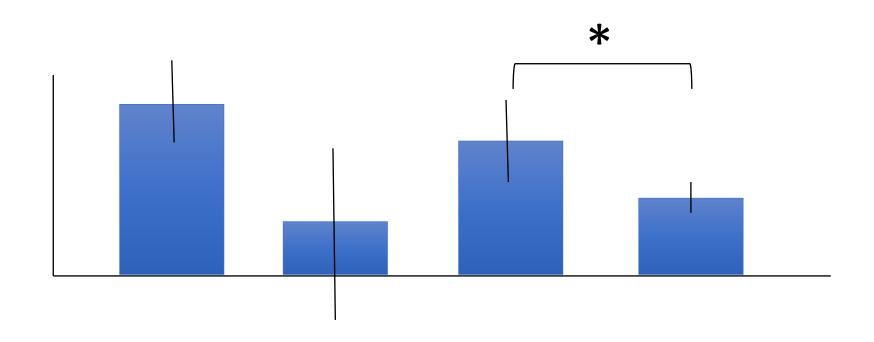

Calculating Confidence interval in excel

= CONFIDENCE(confidence level, standard dev., size)

Once you have calculated the confidence interval you will enter this value as your "custom" error bar in excel

Student's *t*-test used to determine if populations are significantly different

- Assume data follows t-distribution
- At p < 0.05, there is less than a 5% chance that populations are the same (95% chance that populations are different)
- Examines signal (means):noise (variance) ratio



Calculating Student's t in Excel

Can only compare two data sets at a time

*Make sure it is clear on your plots/writing which conditions are being compared

How will you use statistics in your data analysis?

What if the data are not statistically significant?

$$p = 0.055$$

Review Mod 1 project goals

What is our overall goal/question in this project:

What are the conditions we are using to address this:

Review Mod1 experiments

γH2AX

CometChip

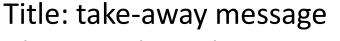
How do we see DNA damage?

How do we see DNA damage?

Type of DNA breaks:

Type of DNA breaks:

• Pros:


• Pros:

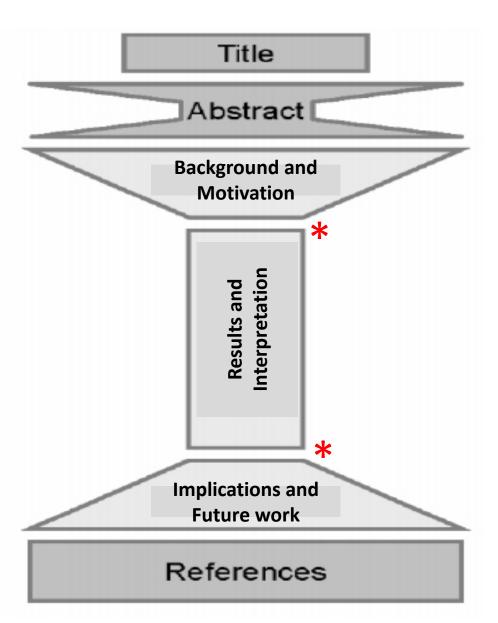
• Cons:

• Cons:

M1 Data Summary

Format: Portrait 8.5x11" .ppt slides See wiki for more details

Abstract: the only section *not* in bullet points


ALL bullet points:

-background and motivation (include references)

-Results and interpretation

Implications and future work (include references)

References (see wiki for format suggestions)

Background & Motivation

- Impact statement
 - General background
 - Describe previous work in the field
- Specific background (e.g. BER, H₂O₂, Arsenic, CometChip, H2AX)
 - Introduce topics, pathways and specific technologies necessary to understand the experimental approach
 - Include BER pathway figure
 - Reference schematic figure
 - Narrow focus to the specific question addressed in your study
- Knowledge gap/statement of problem
 - What is unknown, therefore motivating your study
- Hypothesis
 - What do you propose will be the outcome of your study?
- A brief preview of your findings
 - Here we show...
 - End with broad implications of the study

Results & Interpretation

- Figures and captions
 - Decide on the figures first
 - Use figure subpanels (label with letters)
 - Text: limited on figure, explicit in caption
 - reasonable size
 - descriptive title
 - Intro/purpose at beginning of in caption
 - caption descriptive of image, very light on methods

- Results and Interpretation (each page needs subtitle below figure caption)
 - Goal / intent / purpose of experiment = intro topic bullet
 - What you did: experiments and expectations, describe controls
 - What you found: quantitatively describe your result, referring to the figure ("Figure 1a shows..."
 - What does this indicate: interpret your result, what does it mean?
 - What does this motivate you to do next: **transition** to next experiment

Implications & Future Work

- Start with a very similar paragraph to the last paragraph in your Background/Motivation (restate major results and broad implications)
- Follow same order as in Figures/Results
 - Describe your conclusions from your data
 - If necessary, describe caveats of experiment and suggest improvements
 - Identify unknowns and speculate (within reason)
 - Don't make huge generalizations or overreach
- Propose future experiments, identify new questions that arise
- Come back to the big picture/impact statement topic introduced in background

Notes on Mini-presentation

- Bullet / outline format
- Follow time and content guidelines:
 - Introduce yourself and your research project
 - Clearly state hypothesis to identify main question
 - Be quantitative when stating results (NOT "this was more/less than...")
- Logistics:
 - Submission should not be edited / spliced
 - Ensure that you can be clearly heard in the recording
 - Be mindful of background distractions

Please submit your completed Mini-presentation due by Sun, Oct 11 at 10 pm to bioeng20.109@gmail.com, with filename Name_LabSection_MP.extension (for example, ImaStudent_TR_MP.mov).

Grading rubric for Mini-presentation

Category	Elements of a strong presentation	Weight
Introduction	 Introduce yourself and the research Summarize the background information necessary to understand the research Provide a clear and concise description of the central question / hypothesis 	25%
Methods & Data	 Provide ONLY the method information necessary to understand the results Give complete and concise explanations of the results Relate the results to the central question 	25%
Summary & Conclusions	Highlight the key finding(s) relevant to the central question / hypothesis	25%
Organization	Give a logical, easy-to-follow narrativeInclude transition statements	15%
Delivery	 Show confidence / enthusiasm and speak clearly Use appropriate language (technical or informal, as appropriate) Be mindful of the time limit (3 minutes +/- 15 seconds!) 	10%

The mini-presentation will be graded by Dr. Noreen Lyell with input from Dr. Leslie McClain, and Dr. Becky Meyer.

For Today

- Complete statistics for γ H2AX and CometChip experiments
- Work on Data Summary

For M2D1

- Mini presentation Outline
- Read Intro for Mod 2