

### Why communicate your science?



### CRISPR story was a global, community effort!



### Discovery of repeat sequences in archaea

• While studying non-related anomaly in DNA fragments, identified multiple copies of 30 base repeats separated by 36 base spacers

Found similar repeats in related organisms

• Other work reported repeat sequences in *E. coli* 

2000 Repeat loci identified in 20 microbes

2003 ◆ Spacer sequence from *E. coli* matched to P1 phage



Francis Mojica

### Proposed role for repeat sequences

- <sup>2003</sup> 88/4500 spacer sequences similar to phage
  - 2/3 matched phage known to infect host microbe
- 2005 ♦ *Y. pestis* spacer sequences similar to prophage present with genome of strains
  - New spacers present at the 'front' end of loci

MICROBIOLOGY
Publishing high-quality research since 1947

C. Pourcel, G. Salvignol and G. Vergnaud 9.2

<sup>2005</sup> ◆ Speculated that transcripts from spacers worked via anti-sense RNA inhibition

#### **MICROBIOLOGY**

### Evidence of adaptive immunity

- <sup>2004</sup> Correlation between spacers and phage resistance in Streptococcus thermophilus
- Genetic selections used to isolate phage-resistant *S. thermophilus* 
  - Strains carried phage sequences at repeat loci
  - Insertion of multiple spacers correlated with increased resistance
- 2007 ▶ Phage with mutations in corresponding spacer sequence able to infect microbial host



### Discovery of genes associated with repeats

- Genes identified in the immediate vicinity of repeat sequences
  - Assumed to be related to spacer function
  - Hypothesized roles: gene regulation, replicon partitioning, DNA repair, etc.
- <sup>2007</sup> Cas7 required in acquisition of resistance, but not in resisting phage attack
- <sup>2007</sup> Cas9 required for resistance
  - Contains two nuclease motifs: HNH and RuvC



Emmanuelle Charpentier

Jennifer A. Doudna

"for the development of a method for genome editing"

### CRISPR loci components



- <u>Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)</u>
  - Repeats are roughly perfect, palindromic sequences
  - Spacers correspond to phage sequences
- <u>CRISPR-as</u>sociated (Cas) genes

### Function of CRISPR RNA (crRNA)

- Precursor RNA transcribed from CRISPR loci is cleaved into crRNAs by RNase III
  - Cleaved sequences start with last 8 bp of repeat (5' handle), followed by complete spacer, end with first bp of repeat (3' handle that forms hairpin)
  - Cas9 required for primary processing
    - Binds / positions molecules



# Function of *trans*-activating CRISPR RNA (tracrRNA)

- Third most abundant type of transcript
- Encoded by sequence immediately adjacent to CRISPR loci
  - 25 bp of near-perfect complementarity to repeats



## DNA cleavage mediated by Cas9 with crRNA and tracrRNA

- crRNA / tracrRNA complex promotes structural change in Cas9
  - Formation of central channel that binds DNA
- Cas9 / RNA scan DNA for crRNA target
  - Identified via presence of protospacer adjacent motif (PAM)
  - Bind target sequence to enable strand displacement
- Cas9 cleaves DNA via single blunt cut



### DNA is the target of Cas9 cleavage

- Plasmid conjugation blocked in *S. epidermidis* strains that carried corresponding spacer
- Modified plasmid such that self-splicing intron disrupted target corresponding to spacer
  - If target is RNA, sequence will 'splice out' and CRISPR/Cas9 will recognize and cleave
  - If target is DNA, sequence will not be recognized and CRISPR/Cas9 will not recognize and cleave

### CRISPR / Cas9 recognizes 'non-self' DNA



### PAM required for DNA binding

- dsDNA substrate was radio-labeled
- Cas9 protein added at increasing concentrations
- Binding observed via EMSA



### Cas9 contains PAM interacting (PI) domain

- Binding of tracrRNA-crRNA induces extensive conformational change in Cas9 structure
  - Results in formation of PI domain within the same lobe as the cleavage domain
- Two conserved arginine residues in PI domain interact with non-target strand GG bases
- Cleavage occurs 3 bp upstream of PAM sequence



### Role of PAM in CRISPR system





https://www.youtube.com/watch?v=MbJ7Hnc2K3Q

### Acquisition of immunity

- Phage DNA recognized and fragmented
  - Possible synergy with restriction enzyme system
- Suitable spacers selected by detection of PAM
- Spacer inserted into CRISPR loci by Cas1/Cas2
  - Leader end nicked for insertion
  - PAM-dependent orientation



### Taken together ...



### What is the take-home message?

 CRISPR evolved as a mechanism in bacteria to protect against phage

 Know the players: tracrRNA, crRNA, cas9

 Know how the CRISPR system recognizes the target sequence



**CRISPR-Cas9** 

