M3D1: Enrich candidate clones using FACS

- 1. Prepare cells for sorting
- 2. Complete fluorescence activated cell sorting (FACS)

04/14/20

Important M3 due dates

- Research proposal presentation (22.5%)
 - completed in teams and presented via Zoom
 - due 5/8
- Mini-report (5%)
 - completed in teams and submitted via Stellar
 - due 5/11 at 10p
- Notebook (part of 10% Homework and Notebook)
 - due 5/7 at 10p via email to Joe
- Blog (part of 5% Participation)
 - due 5/12 at 10p via Blogspot

Antibodies are useful research tools

- In immunofluorescence, antibodies are used to label parts of cells
- In assays, antibodies are used for diagnostics

Polyclonal versus monoclonal antibodies

• Antisera contains pool of antibodies (polyclonal antibodies) harvested from animal host

 Hybridomas generate antibodies specific to single epitope on antigen (monoclonal antibodies)

What are your experimental goals?

Engineer an antibody in yeast

- 1. Identify lysozyme-specific single chain variable fragment (scFv) sequences that might bind lysozyme better
- 2. Characterize binding properties of mutated lysozyme-specific scFv antibodies

Lysozyme is the target for the scFv you will study

- Antimicrobial enzyme produced by animals
 - Part of the innate immune system, present in tears
- Catalyzes the breakdown of bacterial cell membranes
 - Glycoside hydrolase that hydrolyzes 1, 4beta linkages in peptidoglycan

Overview of Mod3 experiments

Yeast display can be used to engineer antibodies

- Sequence for antibody of interest is cloned into the yeast display plasmid (=scFv sequence)
- scFv sequence is then mutated in effort to improve affinity or specificity for target
 - Error prone PCR
- Mutated sequence is produced by the yeast cell and displayed on the surface
- Binding to target then characterized

Yeast display used to express antibodies of interest

Antibodies used to confirm scFv expression

- Primary antibody = anti-cMyc, chicken IgY fraction
- Secondary antibody = anti-chicken IgG, goat
 - Alexa fluor 488 covalently linked
- This is how we recognize protein (antibody) on the yeast cell surface, but why would we want to express it there?

Streptavidin / biotin used to confirm lysozyme binding

- Lysozyme was biotinylated
 - Biotin (vitamin B7 / H) covalently attached
 - Small size unlikely to interfere with function or activity of enzyme
- Alexa fluor 647 tagged streptavidin used to label lysozyme
 - Streptavidin:biotin are high affinity binding partners, strongest non-covalent association in nature

How do we identify which yeast cells are expressing scFv that is bound to lysozyme?

Review questions!

• What is the scFv?

- What is the binding partner for scFv of interest in your experiment?
- How will you identify expression of ScFv?
- How will you identify binding of the binding partner?

FACS used to sort cells based on fluorescent signal(s)

- Fluorescence activated cell sorting separates live cells based on fluorescent signals
- Cells are 'read' by laser then charged based on fluorescent signal
- Charged cells are sorted using using an electric field established by detection plates

• Able to visualize real-time fluid stream and droplet formation

Cells sorted and collected based on intensity of fluorescent signals

- Gates used to identify cells with specific fluorescence signature
 - P4 = yeast cells expressing scFv variant that is potentially a better lysozyme binder
 - P5 = yeast cells expressing scFv variant that is potentially a worse lysozyme binder
- Gates established experimentally

488 fluorescence (scFv)

For today...

- Read through wiki information!
- Yeast display: https://www.youtube.com/watch?v=UgG6xANt5ok
 - Just the first ~3 minutes
- FACS: https://www.youtube.com/watch?v=7bCZx5xPwt0

For M3D2...

- Complete individually; read through literature and identify 5 topics / papers that you find interesting.
 - Involve biological engineering and at least tangentially related to a 109 topic/technique
 - Include full citation for articles
 - Write short summary of the information