M3D2:Purify active material

11/16/2017

1. BE Communication lab workshop: Research Proposals!
2. Prelab discussion
3. Demo of FePO4-phage reaction
4. Collect and wash active material: AuNP-Fe(III)phage nanowires
5. Prepare TEM samples
6. Prepare active material for $80^{\circ} \mathrm{C}$ vacuum oven

Module 3: biomaterials engineering

 How do nanoparticle material and size affect battery capacity?active material: in cathode, part of charge/discharge cycles electrochemical rxn

Visualize
nanowires
on TEM

Purify active material

Phage Biomineralized with Iron and NPs

coat protein modified to include
DSPHTELP, negatddeged peptide

sodium phosphate
_ precipitates the iron
amorphebrfacilitates ion insertion into cathode material

Diagram of Mod3 battery

M13 phage: scaffolelectrica
Au or NiNP: \qquad conducto
Fe (III) PO4: ionic

Set aside Fe(III)-phage-AuNP for TEM inspection

- The Fe(III)-phage-AuNP active material is in its purest form
- no impurities, binder, etc.
- Formvar coated Cu-grid
- copper-orange side bottom
\checkmark silver/black side where droplet deposited top
> Practice handling it with tweezers
phage
sample formvar Cu-grid

In lab today...

1. Demo of FePO4-phage reaction
2. Collect and wash active material (lots of long spins!)
3. Practice then prepare TEM samples
4. Prepare active material for $80^{\circ} \mathrm{C}$ vacuum oven
> During the downtime you should discuss and choose a topic for M3D3 homework (and potentially beyond!) submitted as a pair/team
> Remember class time 11/21 Prof. Belcher would like to hear elevator pitches from all groups.
