M3D2:Purify active material

11/16/2017

- BE Communication lab workshop: Research Proposals!
- 2. Prelab discussion
- 3. Demo of FePO4-phage reaction
- 4. Collect and wash active material: AuNP-Fe(III)-phage nanowires
- 5. Prepare TEM samples
- 6. Prepare active material for 80°C vacuum oven

Module 3: biomaterials engineering

How do nanoparticle material and size affect battery capacity?

active material: in cathode, part of charge/discharge cycles

Phage Biomineralized with Iron and NPs

p8 coat protein modified to include DSPHTELP, negativaged peptide

sodium phosphate precipitates the iron

amorph@blofacilitates ion insertion into cathode material

Diagram of Mod3 battery

M13 phage: scaffold electrica

Au or NiNP: conducto

Fe(III) PO4: ionic

Set aside Fe(III)-phage-AuNP for TEM inspection

- The Fe(III)-phage-AuNP active material is in its purest form
 - no impurities, binder, etc.
- Formvar coated Cu-grid
 - copper-orange side bottom
 - ✓ <u>silver/black side</u> where droplet deposited
 - Practice handling it with tweezers

In lab today...

- 1. Demo of FePO4-phage reaction
- 2. Collect and wash active material (lots of long spins!)
- 3. <u>Practice</u> then prepare TEM samples
- 4. Prepare active material for 80°C vacuum oven
- During the downtime you should discuss and choose a topic for M3D3 homework (and potentially beyond!) submitted as a pair/team
- ➤ Remember class time 11/21 Prof. Belcher would like to hear elevator pitches from all groups.