
# to the 20.109 virtual lab!

- 1. Introductions
- 2. Prelab: Laboratory class logistics
- 3. Orientation exercise your first protocol
- 4. Preparations for M1D1

### Introductions!

- Your name
- Your year at MIT
- Any research experience?
- Where in the universe are you currently located?

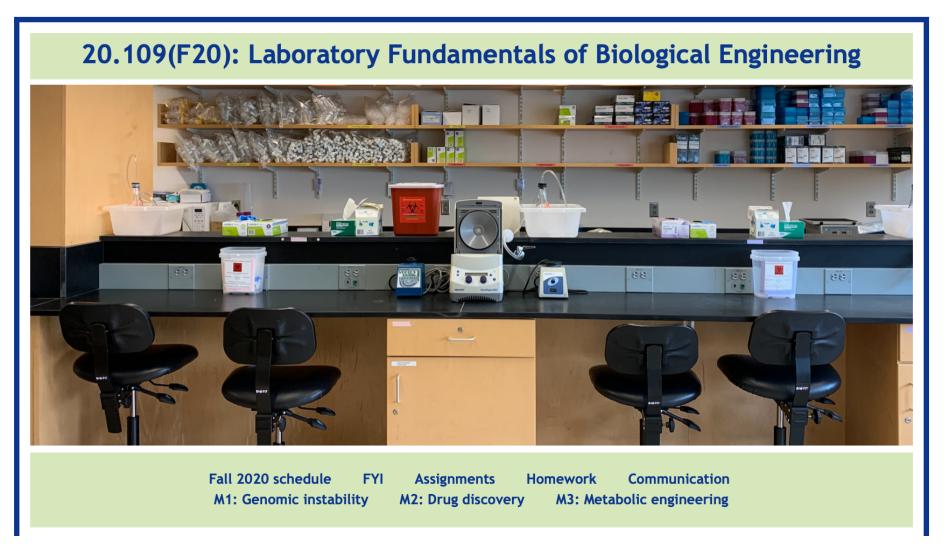




### How can you contact the instructors?

- Noreen Lyell
  - Email: nllyell@mit.edu
- Leslie McClain
  - Email: lesliemm@mit.edu
- Becky Meyer
  - Email: rcmeyer@mit.edu




We have Office Hours via Zoom
We will have 1-on-1s for each student

### Core missions of 20.109 (even in a virtual environment)

- Analyze authentic data
  - Elements of design, unknown outcomes
- Practice communicating your science
  - Written & oral, in homework and assignments, a lot of feedback
- Working in collaboration with colleagues
  - Class utilizes lab partners for experiments
  - Assignments are completed individually or in teams (as noted)
  - Class-wide collaboration (for data acquisition)
  - Punctuality
  - Integrity (personal reflections)
- The faculty are here to help come to us with questions!

### Welcome to the wiki! The wiki is your lifeline...

http://engineerbiology.org/wiki/20.109(F20):\_Fall\_2020\_schedule



### If the wiki is your lifeline, the Schedule page is your best friend

| MODULE | DATE        | LECTURER | LABORATORY EXPERIMENTS                                           | ASSIGNMENTS                                                                                   |
|--------|-------------|----------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|        | T Sep 1     | NLL 🚱    | Orientation and laboratory tour                                  |                                                                                               |
| M1D1   | R Sep 3     | BE ₽     | Learn best practices for mammalian cell culture                  | Orientation quiz Homework due                                                                 |
| M1D2   | T Sep 8     | BE ₫     | Prepare and treat cells for repair foci experiment               | Homework due                                                                                  |
| IM1D3  | R Sep<br>10 | BE ₽     | Use immunoflourescence staining to assess repair foci experiment | Homework due                                                                                  |
| M1D4   | T Sep<br>15 | BE ₽     | Image repair foci experiment and quantify results                | Laboratory quiz Homework due                                                                  |
| M1D5   | R Sep<br>17 | BE ₽     | Treat cells and perform high-throughput genome damage assay      | Homework due                                                                                  |
| IM1D6  | T Sep<br>22 | BE ₽     | Image and analyze high-throughput genome damage assay            | Homework due                                                                                  |
| M 11)/ | R Sep<br>24 | BE ₽     | Complete data analysis using statistical methods                 | Laboratory quiz Homework due                                                                  |
|        | T Sep<br>29 | JN ₽     | Complete in silico cloning of protein expression plasmid         | Homework due                                                                                  |
| M2D2   | R Oct 1     | JN ₽     | Perform protein purification protocol                            | Homework due  Data Summary draft due Sun, Oct 4 at 10 pm [ Blog post due] Mon, Oct 5 at 10 pm |

## Key deadlines this semester

| Module | Assignment                     | % final grade | Due date                       |
|--------|--------------------------------|---------------|--------------------------------|
| 1      | Data summary                   | 15            | 10/4 (draft), 10/14 (revision) |
| 1      | Mini-presentation              | 5             | 10/11                          |
| 2      | Journal club presentation      | 15            | 10/20 & 22                     |
| 2      | Research article               | 15            | 11/11                          |
| 3      | Research proposal presentation | 20            | 12/3                           |
| 3      | Mini-report                    | 5             | 12/7                           |
| all    | Homework and Lab notebook      | 15            | daily                          |
| all    | Participation and blog         | 5             | after module, see wiki         |
| all    | Quizzes                        | 5             | 2 per module                   |

individual: 60%

team: 40%

### Homework helps!

Only 10 percent of your final grade

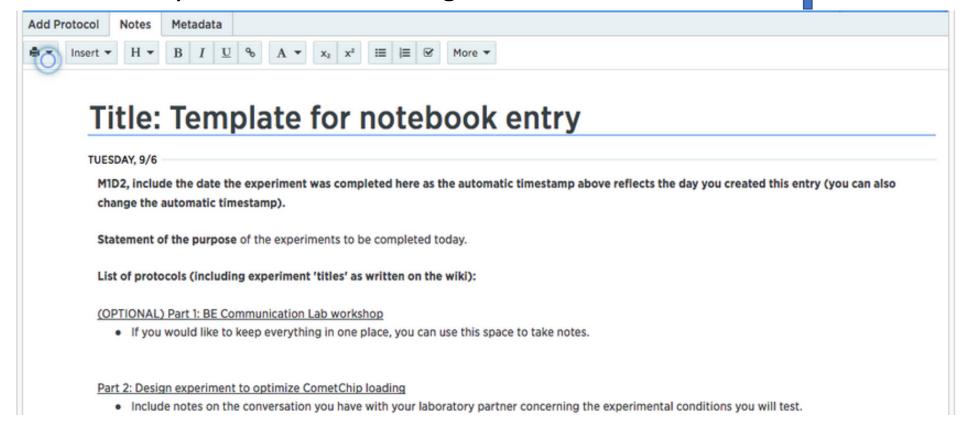




- Homework builds components of major assignments
- Give it your best:
  - Consider homework a first draft
  - Not gratuitous busywork, helps build final reports and oral presentations
  - Feedback is provided (will prove helpful)
  - Great tool to keep ahead of the game and pace your work



- Homework must be submitted by 3:05pm on the day of lab
  - Submit as .doc or .pdf to Stellar
  - Document name: Your name\_assignment name/identifier


(i.e. BeckyM\_M2D3)

### Record your science in Benchling

- Set up your account: benchling.com
- Title your project "20.109(F20)\_YourName"
  - Make each module a new folder
  - Make each day a new entry within the appropriate module folder
- Share with your Instructors and graduate TA



rcmeyer@mit.edu mebane@mit.edu amoise@mit.edu



### A laboratory day in the life of a 109er

- Lab starts at 3:05pm
  - You must alert me in advance if you will be late or have a conflict
- Quiz (on lectures and laboratory material)
  - M1D1, M1D4, M1D7...as noted on the wiki!
- Submit homework to Stellar by 3:05pm
- Participate in interactive prelab discussion
  - Typically 15-45 minutes with focus on experimental details
- Design and Analyze!
  - Keep notes in electronic laboratory notebook (Benchling)
  - Q & A throughout the afternoon/ in office hours/ in 1-on-1s/ via email or Piazza

### For today:

- Complete lab orientation
  - http://engineerbiology.org/wiki/20.109(F20):Laboratory\_tour
  - I will demo Station 1
  - Orientation quiz on M1D1!
- Fill out questionnaire for lab partners (on wiki)
  - Lab partners will be assigned based on time zone with considerations
  - If you already have a bestie in your lab section, you both must email me to request to be partners

#### For M1D1:

Complete homework assignments (see 'Homework' tab on wiki)

http://engineerbiology.org/wiki/20.109(F20):Homework

- Create laboratory notebook in Benchling
- Prepare for orientation quiz
- Complete, screen capture EHS training certificate(s)
- Read Mod1 overview page and M1D1 introduction