

L4 – Quantitative Evaluation of Binding Interactions

The Inner Life of the Cell – Dr. Alain Viel, Harvard

https://www.youtube.com/watch?v=FzcTgrxMzZk

Basic language of binding interactions from 20.110

Affinity: strength of the interaction, measured by the corresponding decrease in free energy upon binding

Specificity: relative strength of interaction for a 'cognate' and 'non-cognate' receptor-ligand complex

There are two basic types of non-covalent interactions: simple binding and allosteric

Some binding interactions are 'simple' equilibria – each encounter is independent simple interaction

ligand protein – ligand complex

protein

P+L

P•L

Others are more complex, involving allostery, where one ligand binding event alters the affinity for another ligand

Thermodynamic analyses provide insight into molecular interactions

As you learned in 20.110, we can think about the following binding-related terms thermodynamically:

- affinity and specificity
- contribution of entropy and enthalpy
- dependence on temperature
- contributions of chemical groups on the ligand and/or the receptor

This information can in turn be used to understand a system and to alter the system (e.g. drug design)

Relationship of ligand binding free energy to association constants

From 20.110:

$$\Delta G_{bind}^{\circ} = -RT \ln K_A$$

$$K_D = \frac{[P][L]}{[P \cdot L]} = \frac{1}{K_A}$$

$$\Delta G_{bind}^{\circ} = +RT \ln K_D$$

Binding isotherms are half maximal at $[L] = K_D$

Logarithmic vs. Linear display of data

as a corollary, choose your concentrations wisely:

1, 3, 10, 30, 100, 300 nM

VS.

50, 100, 150, 200, 250, 300 nM

Range of biologically important interactions

Type of Interaction	K _D (molar)	ΔG_{bind}^0 (at $300 ext{K}$) kcal/mol
Enzyme:ATP	~1×10 ⁻³ to ~1×10 ⁻⁶ (millimolar to micromolar)	-4 to -8 kcal/mol
signaling protein binding to a target	~1×10 ⁻⁶ (micromolar)	-8 kcal/mol
Sequence-specific recognition of DNA by a transcription factor	~1×10 ⁻⁹ (nanomolar)	-12 kcal/mol
small molecule inhibitors of proteins (drugs)	~1×10 ⁻⁹ to ~1×10 ⁻¹² (nanomolar to picomolar)	-12 to -17 kcal/mol
biotin binding to avidin protein (strongest known non-covalent interaction)	~1×10 ⁻¹⁵ (femtomolar)	-21 kcal/mol

higher K_D value weaker interaction

lower K_D value stronger interaction

Specificity in molecular recognition

discrimination among targets

Proteinase K

low specificity

Aliphatic/X Aromatic/X **HRV 3C Protease**

high specificity

Leu-Glu-Val-Leu-Phe-Gln/Gly-Pro

Lab Use - DNA/RNA preps

Lab Use – cleaving fusion proteins

Specificity in molecular recognition – kinase drugs

Recent example from my lab

Specificity in drug binding – fractional saturation

deliver the drug at a concentration below the K_D for non-cognate target

Specificity in drug binding – fractional saturation

deliver the drug at a concentration below the TD₅₀ in patients

 ED_{50} = effective in 50% patients TD_{50} = toxic in 50% patients

Methods to find or evaluate binding interactions

Measuring a thermal melt profile for a protein

Dyes used to detect protein unfolding

ANS

8-anilinonapthalene-1-sulfonic acid (1965)

Nile Red

9-diethylamino-5-benzo[a]phenoxazinone (1985)

solvatochromic

Nile Red under visible and UV light in different solvents

SYPRO® Orange

Most common dye for DSF/TS (2004)

(CH₃CH₂)₂N

CPM

N-[4-(7-diethylamino-4-methyl-3-coumarinyl)phenyl]maleimide (2008)

binds nonspecifically to hydrophobic surfaces; water quenches fluorescence

only fluoresces after reacting with Cys residues

What happens when you add a small molecule?

Thermal shift assays with small molecules

Real thermal shift screens with small molecules

preferential ligand binding to unfolded states?

Real results from thermal shift studies assay development

consider optimizing buffer conditions – pH, cofactors

Real results with thermal shift assays

three replicates for a single experiment

raw fluorescence thermal curves

first derivative representation

Real results with thermal shift assays

raw fluorescence thermal curves

Protein disorder continuum

Determining apparent dissociation constants

hexokinase (receptor) and glucose (ligand)

Experiment 1:

test a wide range of glucose concentrations

 K_D is likely between 0.2 and 1.7 mM

Experiment 2:

test 16 concentration of glucose fit to single binding event model (red)

apparent $K_D \sim 1.12 + /- 0.05 \text{ mM}$

Target engagement in cells: cellular thermal shift assays (CETSA)

Monitor levels of soluble proteins

1 2 3 4 5 6 7 8

Anticipated results from CETSA assays

IsoThermal Dose Response Fingerprint 'apparent potencies' at single temp

Real results from CETSA assays

thymidylate synthase drugs in K562 cells

quadruplicate data from one independent experiment

CETSA for high-throughput screening

CETSA for target identification of drugs

expect that efforts to develop and refine these types of methodologies will also intensify in the near future.

Workflow for novel drug target identification

