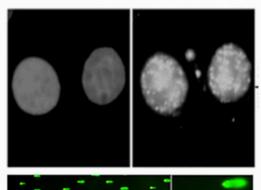
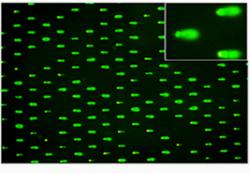
M1D1:

Learn best practices for mammalian cell culture

- 1. Prelab discussion
- 2. Orientation quiz
- 3. Cell culture exercises


Mark your calendar!

- Data summary (15%)
 - completed in teams and submitted via Stellar
 - draft due 10/4, final revision due 10/14
- Mini-presentation (5%)
 - completed individually and submitted via Gmail
 - due 10/11
- Laboratory quizzes (collectively 5%)
 - scheduled for M1D4 and M1D7
- Notebook (collectively 5%)
 - one entry will be graded by Aimee 24 hr after M1D7
- Blog (part of 5% Participation)
 - due 10/5 via Blogspot


Overview of M1: genomic instability

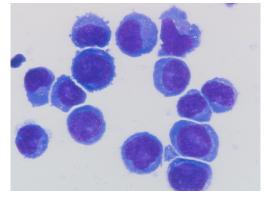
Research question: Does exposure to As inhibit, or decrease, repair of H_2O_2 -induced DNA damage, raising the possibility that combined exposure is an important risk to public health?

1. Use repair foci experiment to measure DNA breaks

 Examine effect of H₂O₂ +/- As on double strand DNA breaks by measuring γH2AX foci formation

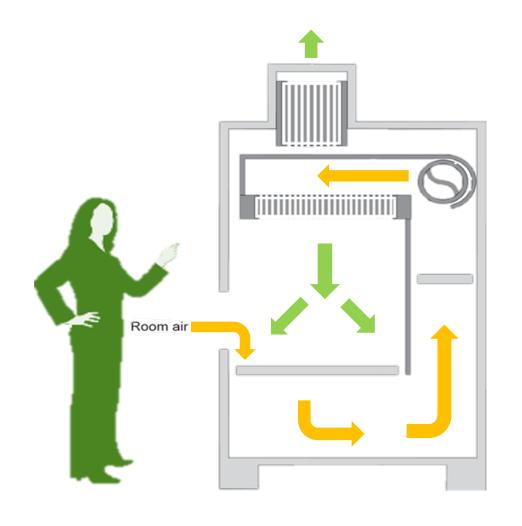
2. Use high-throughput genome damage assay to measure DNA damage

 Measure effects of H₂O₂ +/- As on DNA damage by measuring DNA migration in agarose matrix


We will use human lymphoblastoid cells

- Specifically, what cell line are we using in M1?
- What are primary cells? Why are they difficult to use in experiments?

Why are cancer cells easier to use in experiments?


 What growth conditions are important when culturing mammalian cells?

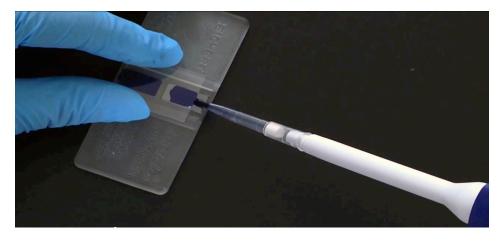
Biosafety cabinets are used to maintain sterility

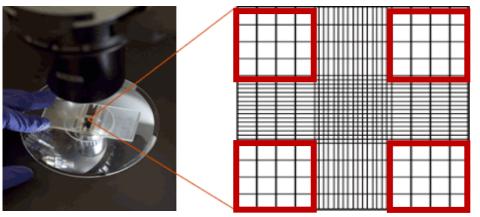
- Spray everything with 70% ethanol
 - Wipe cabinet before and after use
 - Wipe everything that enters the cabinet
 - Do not spray cells with EtOH
- Do not disturb air flow
 - Do not block grille or slots
 - Minimize side-to-side arm movements
 - Work > 6" away from sash
 - Leave blower on
- Do not talk into cabinet or incubator!
- Only open sterile media in the cabinet

Growth medium is used to culture cells

Food

RPMI 1640 (Roswell Park Memorial Institute)


• FBS (fetal bovine serum)

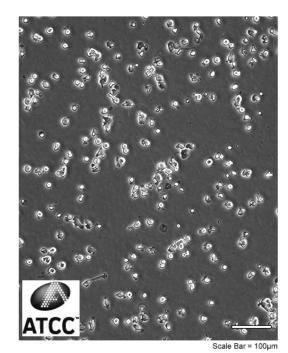


Non-food

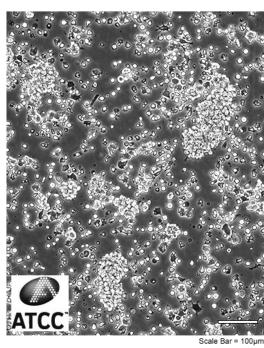
Antibiotic solution: penicillin and streptomycin

Hemocytometers are used to count cells

- Trypan blue mixed with cell suspension at 1:10 ratio, then 10 μ L added to hemocytometer
- Cells within highlighted sections of the hemocytometer grid are counted


cells / mL = average # of cells in the 4 highlighted boxes * 10,000

The language of cell culture


• Confluence

• Splitting / Sub-culturing

Seeding

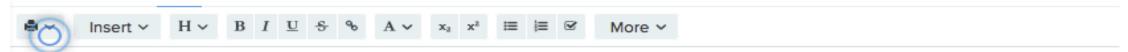
High density

For today...

- Choose a team name!
- Complete Orientation quiz
 - Submit to Stellar by 10 pm
- Work through cell culture exercises
 - Be sure to record your notes in your laboratory notebook

For M1D2...

- Prepare a template for Benchling laboratory notebook entries
- Be sure to share your Benchling laboratory notebook



What should go in your notebook?

Laboratory notebook entry component:	Points:		
	Complete	Partial	Missing
Date of experiment (include Module#/Day#) and Title for experiment	1	0.5	0
Mypothesis or goal / purpose	2	1	0
Protocols (link to appropriate wiki sections)	1	0.5	0
Answering questions embedded in wiki sections	5	3	0
Observations from demonstrations and video tutorials	3	2	0
Visual details			
Qualitative information			
Raw data			
Oata analysis	3	2	0
Calculations			
Graphs and Tables			
Summary and interpretation of data	3	2	0
What did you learn?			
How does this information fit into the larger scope of the project?			
Information is clear	2	1	0
All days represented	5	3	0

Be sure to include your responses to the prompts within the laboratory exercises!

How should you format your notebook?

M1D1: In silico cloning and confirmation digest of protein expression vector

THURSDAY, 2/8

Hypothesis or goal:

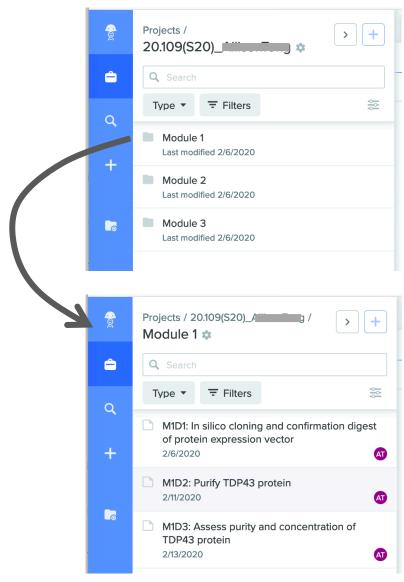
What are you testing and what do you expect of your results?

Protocols: [include link to wiki]

Part 2: Construct pRSETb FKBP12 in silico

- Include all work / notes / images / sequences generated.
- Be sure to note any interesting observations or protocol changes!

Part 3: Confirmation digest


- Include completed table with volumes.
- Include calculations.
- Be sure to note any interesting observations or protocol changes!

Summary and interpretations:

What, if any, conclusions can be made and what does this prepare you to do next?

How should you organize your notebook?

- Title your project "20.109(F20)_YourName"
 - Make each module a new folder
 - Make each day a new entry within module folder
- Share the project with Instructors and Aimee
 - Right-click and choose 'settings'
 - Add collaborators by email
 - nllyell@mit.edu
 - amoise@mit.edu
 - rcmeyer@mit.edu
 - mebane@mit.edu

