Notes on the Research article!

- Due date: Mon, April 29 @ 10pm
- Individual assignment
- No revision
- Text: Word doc or PDF
- Figures: in Word doc or PPTX
- Written in paragraphs (no more bullet points)

WWW. PHDCOMICS. COM

This message brought to you by that manuscript you're supposed to be writing.

writing.

Overall suggested breakdown of RA components

- Title & Abstract (10%)
 - First page
- Introduction (10%)
 - ~2-3 pages
- Methods (20%)
 - ~2-4 pages
- Results w/ Figures & Captions (50%)
 - ~4-5 pages
- Discussion (10%)
 - ~2-3 pages
- References
 - Last page(s)

The Introduction

Structure of the Introduction

• Impact statement

Can be different for each writer!

- Why is your research important?
- Specific background
 - Introduce topics important to understand the context of the project
 - Such as?
 - Narrow focus to the knowledge gap addressed in your study
 - Include citations!
- Knowledge gap
 - What remains unknown and how will your research question answer it?
 - Include your research question!
- Preview of your findings
 - Here we show...

Make sure the research question can be addressed by your experiments

The Methods

Notes on the Methods section

- Group methods in subsections with descriptive titles
 - Logical, not chronological
- Include an introductory sentence which explains purpose of method
- Methods are not protocols
 - Include the detail necessary for work to be repeated in a different lab
 - Do not need volumes or concentrations of stock solutions since these can vary
- Include genotype of any bacteria/yeast strains
- Include sequences of any primers used

Extra notes on the methods section

- Flow cytometry
 - Detection was limited to 100,000 events
- ICP-OES
 - performed at Materials Research Laboratory core at MIT
 - 3 replicates per sample
 - read time 5s
 - radial viewing mode
 - viewing height 8mm
 - report wavelengths used for analysis
- TEM
 - Preparation of grids for visualizing cadmium sulfide particles
 - performed at Materials Research Laboratory core at MIT

The Results

How do you write about the results?

- Your goal was not to create a fully functional bioremediation system that was ready for deployment into the environment
- Module called "protein engineering"
- Everything you learned about how your peptides affected the capture of cadmium sulfide particles is valuable
 - Not every experiment has to work perfectly, but they do build on each other to show an overall picture of the peptide effect

How do you write about results: in figures/captions?

Figure

- Organize figures logically
- Use figure subpanels as needed
- Limit text on the image, move extra details / explanation to the caption
- Use appropriately sized images

<u>Caption</u>

- Include title that is take-home message
- Include introductory sentence at start of caption if you have multiple panels
- Ensure caption has information needed to "read" the figure
 - information about visualization, statistics, replicates, etc...
 - no interpretation

How do you write about results: in the text?

- State the goal / intent / purpose of experiment in the first sentence
- What you did: experiments, variables, controls used
- Describe the results you show quantitatively when appropriate
 - Not "higher or lower"
- When you quantitatively describe your result, refer to the figure in the text (Figure 1a).
- What did you do next: transition to next experiment

Where might you put your rationale for peptide selection?

What are the 6xG and 2xGCC controls?

What figures will be included in the Research Article?

2. 3.

1.

4. 5.

•

Overview Schematic

• Visually represent the key concepts of the project

Cloning figure

- Sequencing data
 - Chromatograph or Sequence

Flow Cytometry figure

- Graph of mean FITC channel signal for -/+ induction for the following groups:
 - 6xG
 - 2xGCC
 - Your team
- Error bars show standard deviation
- Histogram graph(s) of binned raw data for your team -/+ induction

ICP-OES figure

- Graph of ppm data for following groups
 - Media only
 - UT
 - EV
 - 6xG
 - 2xGCC
- Error bars show standard deviation

Fluorimetry and TEM figure

TEM

- Representative images from dropbox folder
 - Make qualitative assessments on particle structure and uniformity
 - Use scale bars to estimate particle size

Fluorimetry

- Table that compares:
 - Peak intensity emission value
 - Wavelength of peak intensity
- Groups:
 - UT
 - EV
 - 6xG
 - 2xGCC
 - Your team
- Use the corrected values at 425
 - Full data set there
 - Has the S1/R1 correction in data file

Emission fluorimetry data on same axes (graph of corrected 425nm)

WF

Results vs Discussion Section

Reporting versus Interpreting your data

Results (i.e. what do you see?):

- What was the goal of the experiment?
- What controls/variables were tested?
- Data from the experiment reported quantitatively
- What experiment follows based on the results you report

Discussion (i.e. what does it mean?):

- What do you conclude from the data, and how do your results and controls support your conclusions?
- What is the context for your results?
 - Are there any unexpected results or technical issues that should be clarified?
- Overall, what does your data indicate and how would you follow up on it?

The Discussion

Structure of the Discussion

- Here we showed...
 - Restate major results
- Describe your conclusions from your data
 - If necessary, describe caveats of experiment and suggest improvements
 - Follow same order as in Figures/Results
- Identify unknowns and speculate (within reason)
 - Don't make huge generalizations or overreach
- Propose future experiments, identify new questions that arise
- Come back to the big picture / impact statement topic introduced in background

Ideas for Future works:

• What are some next steps?

• What are some broader experiments?

Remember: the Research Article will tell a story as a whole

- Introduction and Discussion should match
 - Preview / Review of the key findings
- Figures should be **connected** to Results
 - Figures should be referenced in Results text
 - Section headers in the results should relate to figures
- Results should be **tied together** with transitions
- Discussion should integrate the results together into a cohesive take-home message
- Final statement in Discussion should relate to impact statement from Introduction