# Background

# Analogies exist between biological and physicochiemical methods of remediation

lon-exchange

Cell surface display



#### **Natural Biomaterials**



Coccosphere CaCO<sub>3</sub> Mann, 1996





Abalone shell CaCO<sub>3</sub>



Diatom SiO<sub>2</sub>, Belcher, 1990



Magnetotatic bacterium Fe<sub>3</sub>O<sub>4</sub> Gorby, 1988

#### Shell Structure Imaged via SEM





#### **Protein Mediated Crystal Growth**









## Nanoscale Biomolecules as Tool-kit





Making Stuff Wilder

Host David Pogue travels the globe to explore new technologies inspired by nature. Aired October 23, 2013 on PBS





#### M13 Bacteriophage



880 nm

| Protein        | pVII | pIX | pVIII  | pIII | pVI |
|----------------|------|-----|--------|------|-----|
| Residues       | 33   | 32  | 73     | 427  | 112 |
| # of<br>Copies | 5    | ~5  | ~2,700 | 3-5  | ~5  |



#### **Peptide Libraries & Selection**







Images created by Steven Kottman, published in Science (2004) 303, 213



4 strands of pVIII with a DDAHVHWE peptide added to the end of one strand



#### Single Crystals Nanowires



Science, 303, p213, 2004

#### **Schematic Diagram for Gold Nanowire**



- Gold ions
  - Incubated with p8#9
  - Partly reduced by ascorbic acid
  - Formation of nanowires in static condition with silver catalyst
  - (VSGSSPDS) Chung-Yi Chiang

#### Youjin Lee

#### **TEM Images of Gold nm Nanowires**

Relatively uniform diameter along the length 10,15, 20, 25, 30, 50 nm





#### BATTERY MATERIALS CAN BE DEPOSITED ONTO VIRUS-TEMPLATED METAL NANOFOAMS



#### **More Improvement** in Catalytic Activities By Compositing Small Amounts of Pd Nanoparticles



Oh, Nature Comm, 2013



b. mono or multi-inorganic materials incorporated M13 virus aerogels production



Jifa Qi, Advanced Functional Materials 2016



extremely light-weight, for M13-AG: 2mg/cm<sup>3</sup>, for M13-CFO AG: 13mg/cm<sup>3</sup>; M13-Ru AG: 10mg/cm<sup>3</sup> high porosity of 99.8 % for viral AG





Xiangnan Dang\*, Hyunjung Yi\*, et al., Nature Nanotechnology 6 377 (2011)



STEM-EDX elemental mapping of Bio-NaYF<sub>4</sub>:Yb,Er samples showing all the elements of Na, Y, F, Yb, Er are overcoat on the biotemplates (P from DNA).



# Strategy #3: *a.k.a.* precipitation



## Small digression: Nothing in life is free

•

#### Metal Reduction

- Electrons (e<sup>-</sup>) have to come from somewhere
- Donations of e<sup>-</sup> have to overcome metals redox potential (ΔG<sup>o</sup> ~usually high)

Chemical precipitation

- Metals need to react with something
- Reactive species that produce insoluble compounds  $(CO_3^{2-}, PO_4^{3-}, SO_4^{2-})$  are not common
- Require changes in pH

Wine Industry SO, SO,2 H<sub>2</sub>S SO,2 PAPS HSO, ---- HSO, Fermentation caused H,S yeast to produce Methionine Cysteine gaseous odors O-AH O-AS Primary culprit was Cytosolic nitrogen pool sulfur compounds

## Small digression: Nothing in life is free

#### Metal Reduction

- Electrons (e<sup>-</sup>) have to come from somewhere
- Donations of e<sup>-</sup> have to overcome metals redox potential (ΔG<sup>o</sup> ~usually high)

#### Chemical precipitation

- Metals need to react with something
- Reactive species that produce insoluble compounds ( $CO_3^{2-}$ ,  $PO_4^{3-}$ ,  $SO_4^{2-}$ ) are not common
- Require changes in pH

# Wine Industry

- Fermentation caused yeast to produce gaseous odors
- Primary culprit was sulfur compounds



# Metabolic engineering for H<sub>2</sub>S production

#### Engineering $H_2S$ strains



Linderholm, A. L., et. al. Identification of Genes Affecting Hydrogen Sulfide Formation in Saccharomyces cerevisiae. *Appl. Environ. Microbiol.* **74**, 1418–1427 (2008).

### Engineering $H_2S$ strains





# Using yeast by-products to reduce and react heavy metals







# Taking a closer look: quantum dot synthesis

#### CdS precipitation



#### Alberta Canada Oil Sands







# Bio-precipitation of heavy metals

Metabolic engineering for heavy metal precipitation, *we can clean to EPA standards for Cu, Pb, Hg, Cd, Zn* 



Nat Sustain 3, 303–311 (2020)



#### Real world example: Canadian Athabasca Oil Sands







# Yeast has proven to be a promising platform for metal remediation

#### Strategy #1: *a.k.a.* ion-exchange



- Use "multiplier" proteins to enhance capture capacity
- Either use computational or experimental methods to create metal-specific capture motifs

- Strategy #2: *a.k.a.* absorption
  - Metal transporters are an effective method to sequester specific metals
  - There exist multiple options to engineer enhanced meta hyperaccumulating in yeast

Strategy #3: *a.k.a.* precipitation



- Use byproducts to react or 
  precipitate metal species
- Reacted compounds can be useful for other applications
- Use biomineralization peptides to facilitate the growth of precipitated metals



- Combination Strategy
  - Intelligently combine strategies 1—3 to create multi-purpose bioremediating yeast.
  - Work with beer and wine industries to scale and package yeast for environmental applications

#### Quantum Dot (QD)





2023 Noble prize winer Prof. Bawendi and his II-VI QDs





by Samsung Display Co



Size tunable CdSe QDs' fluorescence spectra

Topics in Current Chemistry 378(2) DOI:<u>10.1007/s41061-020-0296-6</u>