M2D7: Examine features in gRNA-targeted genomic sequences

Prelab discussion

- Perform computational analysis of MG1655 regulatory elements potentially affected by gRNA binding
- Work on research article with extra time

WWW. PHDCOMICS. COM

This message brought to you by that manuscript you're supposed to be writing.

M2D7: Examine features in gRNA-targeted genomic sequences

Prelab discussion

 Perform computational analysis of MG1655 regulatory elements potentially affected by gRNA binding

• Work on research article with extra time

Quiz Today Friday

WWW. PHDCOMICS. COM

This message brought to you by that manuscript you're supposed to be writing.

Office Hours (T/R): T- Becky 16-317

R- Noreen 16-319

Either- Jamie 16-469

Mod2 Overview

Research goal: Increase the yield of commercially valuable byproducts in *E.coli* using CRIPSRi technology to target genes involved in mixed-acid fermentation pathway.

Last Lab:

Measure bacteria O.D. and fermentation products

This Lab:

Examine DNA regulatory elements that may impact the efficacy of your CRISPRi system

Next Lab:

Organize figures and outline text for the research article

Design an experiment

Collect data

Interpret data

Reflect

Why would you care about transcription factor binding if you didn't target a TFBS?

- We have been focused on using our CRISPRi system to block RNAP
- Other regulatory elements, including transcription factors, can be affected by the binding of your CRISPRi complex
- Your project involved engineering a gene regulation complex
 - When considering the efficacy of your designed system, you also need to consider any potential unexpected consequences

Basic overview of today's lab

Get your gRNA sequence + some bases up and down

Check if 25
transcription factors
might bind
in/around your gRNA
target sequence

Transcription factors bind all sorts of different sites – use a Positional Weight Matrix to check all of them

Determine the potential for your gRNA to inhibit transcription factor binding

From ChIP-Seq to PWM

Transcription factor sequence binding data

Positional **Weight**

Matrix

PWM

> 0 – More likely to be functional < 0 – More likely to be random

TGCTG = 0.9

Log (probability of finding this base)

~Math~

(background nucleobase frequency)

Position Weight Matrix Takeaway

PWM

A 1.6
$$-1.7$$
 -0.2 -1.7 -1.7 C -1.7 0.5 0.5 1.3 -1.7 G -1.7 1.0 -0.2 -1.7 1.3 T -1.7 -1.7 -0.2 -0.2 -0.2 -0.2

- 1) PWMs allow you to check for putative TF binding because TFs bind multiple sites
- 2) PWMs are a function of:
 - 1) How likely it is at each position for a certain base to show up
 - 2) The background frequency of that particular base
- 3) A score for a predicted sequence can be calculated by summing a base's score at every position
- 4) Larger total scores = more likely to be hits Smaller total scores = more likely to be random
- 5) A Core score is calculated by the max score of any 6 consecutive nucleotides

Extra cool math

$$R_i = \log_2(4) - (H_i + e_n)$$

4 bases

Entropy – high if outcome is uncertain

Low if outcome is certain

Creating a sequence logo of 5-letter words for Wordle

111 views...

For Today

- Complete the wiki exercises on regulatory elements
- With extra time, work on:
 - Data analysis
 - Research article outline
 - Homework for M2D8

For M2D8...

Outline the discussion section for the Research Article

Discussion section

- Start with 'here we showed...'
 - Restate major results and broad implications
 - Follow same order as in Figures/Results
- Describe your conclusions from your data
 - If necessary, describe caveats of experiment and suggest improvements
- Identify unknowns and speculate (within reason)
 - Don't make huge generalizations or overreach
- Propose future experiments, identify new questions that arise
- Come back to the big picture / impact statement topic introduced in background