M1D1: Practice cell culture and begin sub-nuclear foci assay

9/11/19

- 1. Orientation Quiz
- 2. Prelab discussion
- 3. Learn about cometchip assay
- 4. Tissue culture practice
 - a) Seed for gamma-H2AX assay

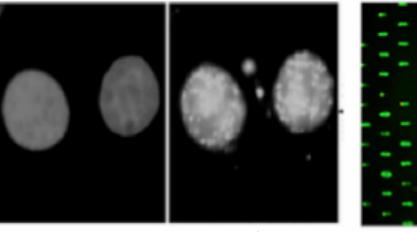
<u>Office Hours</u>	7
Noreen Wed 10am-12pm Fri 10am-12pm in 16-317	
Leslie Wed 9-10am Fri 4-5pm in 16-469	
Becky Tues 12-1pm Thurs 12-1pm in 16-220	

by appointment: nllyell@, lesliemm@, rcmeyer@

Mod 1: Major Assignments

- Data summary (15%)
 - In a team, submit on Stellar
 - Draft due 10/14, final revision due 10/26
 - Format: Bullet points, .PPTX
- Mini-presentation (5%)
 - Individual, submit video via Gmail
 - Due 10/19 by 10pm
- Lab quizzes –be on time!
 - M1D4 and M1D7
- Notebook (part of 10% Homework and Notebook)
 - Due 10/4 at 10pm, graded by Colin
- Blog (part of 5% Participation)
 - Due 10/15 at 10pm

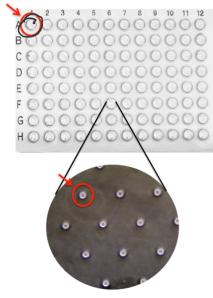
Elevator pitch


Overview of Module 1: Measuring Genomic Instability

Quantify DNA damage in mammalian cells following exposure to

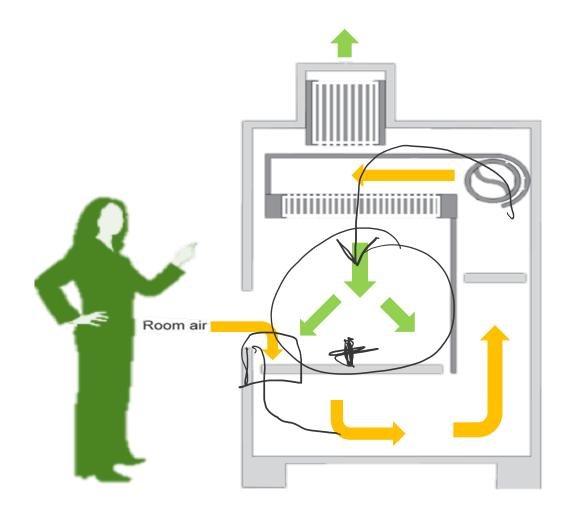
methylating agent and arsenite

Why these chemicals?



- VH2AX assay: Higtone
- Immunofluorescence
- Cellular response to
 DNA damage

<u>CometChip assay</u>:


P

- single cell gel electrophoresis
- single strand breaks

Tissue culture sterile technique

- 70% ethanol everything:
 - Wipe cabinet before and after use
 - Wipe everything that enters the cabinet
 - Do not spray cells with EtOH
- Do not disturb air flow:
 - Do not block grille or slots
 - Minimize side-to-side arm movements
 - Work > 6" away from sash
 - Leave blower on always
- Do not talk into incubator!
- Only open sterile media in hood

Mammalian Cell Culture Medium We are using CHO cells Food: DMEM (Dulbecco's Modified Eagle's medium) Defined Sugar amino acids, vitamins, salts, phenol red = pH indicator FBS (fetal bovine serum) · Undefined growth factors lipids (hdesterol

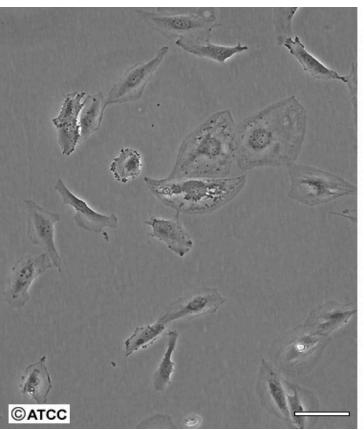
Non-food:

- antibiotics:
 - penicillin
 - streptomycin

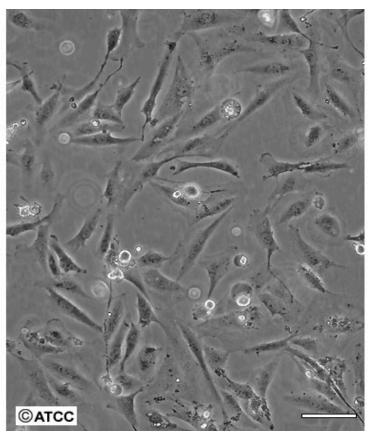
) bacterial growth

Mammalian Cell Culture Terminology

Confluence

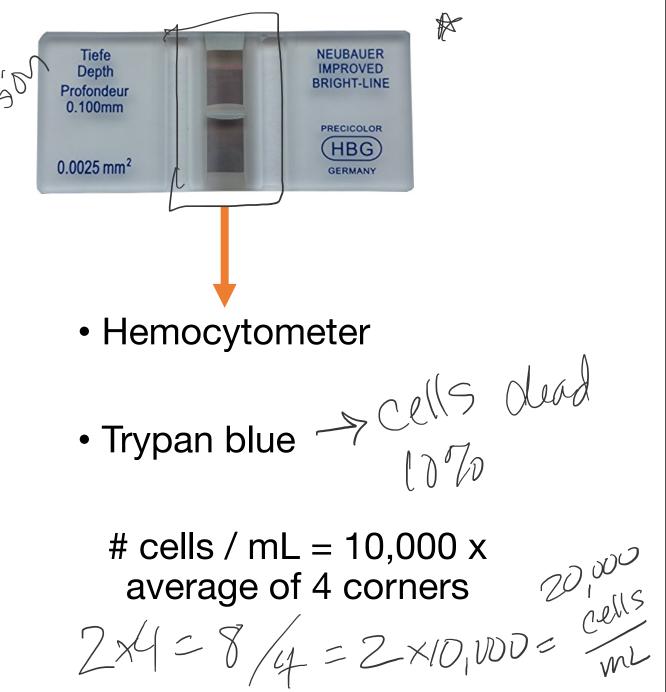


Splitting


Subculturing

• Seeding Moving cells to CAT a new container

Low Density


50% confluent LJ Split frem High Density

General steps for splitting cells Why do we do each step? 16. Memore medica-aspirator healthy, confluent 2. Rinse with PBS washing off debris anti-trypsin 3. Detach cells with trypsin (enzyme) 36. Incubator for 2min 4. Count cells Know Show many

5. "Seed" new culture vessel

10 m celenspertson Counting cells

Upcoming assignments: What should go in your notebook?

aboratory notebook entry component:	Points:		_
	Complete	Partial	Incomplete
ate of experiment (include Module#/Day#) and Title for experiment	1	0.5	0
ypothesis or goal / purpose	1	0.5	0
rotocols (link to appropriate wiki sections)	1	0.5	0
otes on protocol changes / clarifications	1	0.5	0
bservations	2	1	0
Visual details			
Qualitative information			
Raw data			
ata analysis	3	1.5	0
Calculations			
Graphs and Tables			
ummary and interpretation of data	3	1.5	0
What did you learn?			
How does this information fit into the larger scope of the project?			
nformation is clear	2	1	0
ll days represented	1	0.5	0

Due 10pm after each module, as posted on wiki

http://engineerbiology.org/wiki/20.109(F18):_Assignments

How should you format your notebook?

M1D1: In silico cloning and confirmation digest of protein expression vector

THURSDAY, 2/8

1

Hypothesis or goal:

What are you testing and what do you expect of your results?

Protocols: [include link to wiki]

Part 2: Construct pRSETb FKBP12 in silico

- Include all work / notes / images / sequences generated.
- Be sure to note any interesting observations or protocol changes!

Part 3: Confirmation digest

- Include completed table with volumes.
- Include calculations.
- Be sure to note any interesting observations or protocol changes!

Summary and interpretations:

What, if any, conclusions can be made and what does this prepare you to do next?

How should you organize your notebook?

- Entitle your project "20.109(F19)_YourName" 🛩
 - Make each module a new folder
 - Make each day a new entry within module folder
- Share the project with Becky and Colin (if you have not already)
 - Right-click and choose 'settings'
 - Add collaborators by email address
 - rcmeyer@mit.edu
 - cyhkim@wi.mit.edu

Today in Lab

- 1. TC practice
 - Estimate cell size
 - Split and seed CHO cells
- 2. Make sure to keep notes in Benchling!
- 3. Review Cometchip assay and watch Engleward lab JOVE video

(https://www.jove.com/video/50607/cometchip-high-throughput-96-wellplatform-for-measuring-dna-damage)

M1D2 HW: Create a template for your benchling notebook and make a M1D2 entry from it. For full credit you must include calculations necessary to complete the table in Part 1 on M1D2.

Condition	EdU (final concentration = 5 μ M)	As (final concentration = 80 μ M)	Media	Final volume (1 mL / well)
No treatment control (no MMS, no As)	1 μL	0	2 mL	2 mL
MMS, no As				
no MMS, As				
MMS, As				