M3D4: Transmission Electron Microscopy (TEM)

11/30/2017

- 1. *Quick* Prelab Discussion
- 2. Two groups at a time go to TEM (Koch)
- Class works on research proposal (presentations in one week! 20% of your grade!)

Only three 20.109 days left (?!#?)

M3 major assignments

- Research proposal (20%) Thursday Dec. 7th 1pm
 - upload slides to Stellar by deadline
 - bring 1 print-out of your slides to 16-336
- Mini-report (5%) Monday Dec 11th 10pm
 - No abstract, no methods section
 - Background/Motivation, Figures and combined Results/Discussion
- Final blog post: Dec. 8th by 10pm; Bonus blog: Dec 12th at 10pm

Extra Office Hours (find us in our offices):

Monday 11/4
Tuesday 11/5
Tuesday 11/5
Josephine, Noreen
Noreen

Wednesday 11/65-7pmNoreen

Thursday 11/72-3pmJosephine

- Friday 11/8 10:30-12:30pm Leslie

– Email us to make appointments!

Communication Lab | Make Comm Lab appointments!

TEM, capacity, EDX

TEM: basics

1931 Ernst Ruska (1986 Nobel Physics)

- High resolution ~ 0.2nm
 - de Broglie wavelength $\lambda_{(e)} \sim 0.005$ nm
 - compare to $\lambda_{\text{(blue light)}} \sim 400 \text{ nm}$
 - Rayleigh $R_{\text{light}} = 0.61 * \lambda / \text{NA}$
- Electron source:
 - thermionic emission by tungsten, heated to ~ 200 kV
 - focusing lenses **electromagnetic**
 - vacuum gas diffuse e-
- Sample preparation
 - thin and sturdy 10nm=100um
 - grid copper: sturdy and conductive
 - biomaterials must be coated electron dense materialins

Electron

- Image ≈ sample *density*
 - e pass through & are also scattered
 - phosphor screen (old), YAG-coupled CCD (new)
 - e- to photons=image on film or screen

electron source

condenser lens (electromagnetic)

sample

imaging plate

detection

illumination

TEM micrographs

results, discussion text

- ➤ What will you learn?
- at low resolution: length of nanowire, general morphology, # of np, diameter of nanowire, uniformity, density
- at high resolution:

size of nanoparticle, amorphous vs. crystalline FePO4

low

high

Elemental mapping by EDX

 X-ray emission spectrum is characteristic of unique atomic structure of element

EDX analysis on JEOL, JEM2100

➤ What will you learn?

- at what ratios?
- EDX: energy-dispersive X-ray spectroscopy analysis
 - atomic composition of heavier elements in material
 - X-ray emission spectrum is characteristic of unique atomic structure of element
 - expected: iron, gold, nickel, phosphate, oxygen, carbon, copper
 - contamination:

sodium, silicon

abundance

Today in lab...

- TEM in Koch basement
 - 1:30pm: Yellow/ Green
 - 2:15pm: Blue/Pink
 - 3:00pm: Purple/White
 - 3:45pm: Red/Orange
 - ➤ What can your TEM images suggest about the phage biomineralization, AuNP and NiNP binding? Are the NP the size expected?
- M3D5HW: Calculate mA needed to discharge your experimental battery (choose 1 cathode weight) battery in 10hrs, handwritten or emailed calculations are fine, turn in individually
- Reminder: Quiz M3D5
- Use your time wisely:
 - draft your research proposal slides
 - discuss how the presentation speaking parts will be shared
 - draft talking point notes for presentation
 - review rubric on wiki to make sure you are including all components necessary