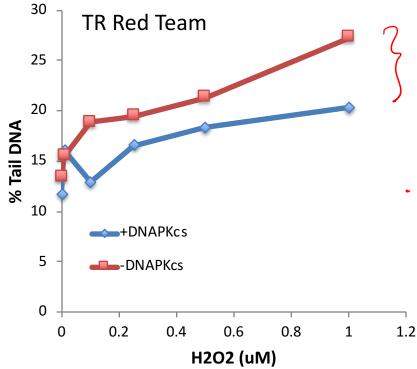
M1D6: Complete sub-nuclear foci assay staining


10/2/18

- 1. Stain γH2AX foci
- 2. Work on Data Summary in down time
- 3. Paper discussion

Announcements

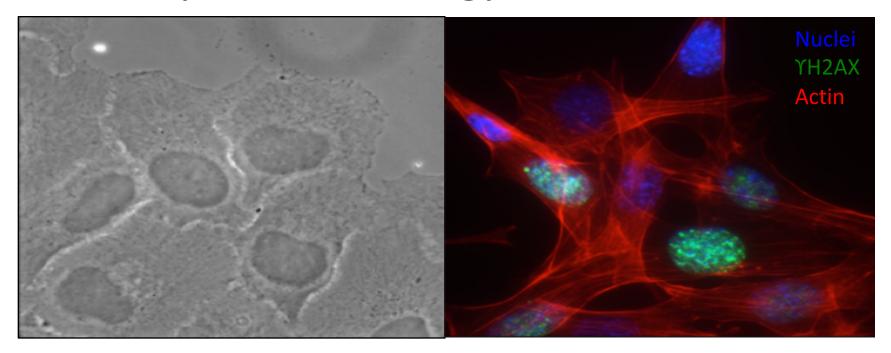
- Quiz Thursday (10/4) Extra office hours Endary 2-3°, Sat/Mon? Data Summary draft due Monday 10/8 (6 days away!)
- You already have over half the data you need to complete your Data Summary!

What did your CometChip data look like?

talkabout diff. In Data summary WF-Yellow team for dose response


You will need to plot 95% confidence intervals—explanation coming in Thursday's prelab!

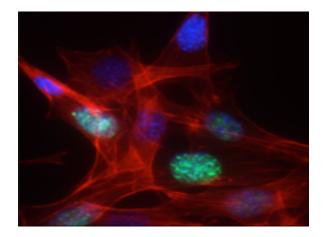
CometChip recovery data to include in Data Summary


	Data fror 50 uM H	•					
•		$_{2}O_{2}$	replicate comet chip exper				.XPEN
				$\backslash \ $	\sim		•
1					S		N.
2	M059K (+DNA	PKcs)	A	V			<u> </u>
3	Time (min)	17-Oct	21-Oct	23-Oct	7-Nov	8-Nov	15-Nov
4	-20	8.8307	9.3469	15.1883	6.4421	10.1519	8.3265
5	0	65.5986	73.7173	11.5915	13.6661	22.1336	33.9372
6	20	32.3809	30.3926	25.659	8.9514	11.4634	16.667
7	40	11.3853	23.8967		8.6218	16.3445	10.4776
8	60	13.4105	14.8082	15.1418	8.3472	9.8262	12.8872
9							
10							
11	M059J (-DNAP	Kcs)					
12	Time (min)	17-Oct	21-Oct	23-Oct	7-Nov	8-Nov	15-Nov
13	-20	9.784	20.5153	13.7129	8.134	14.466	10.6093
14	0	76.2265	74.9286	70.3199	70.8689	50.5001	63.5164
15	20	76.7371	77.3443	55.0552	69.212	43.9916	37.2402
16	40	61.5771	72.2957		51.5209	32.7484	30.8764
17	60	40.9693	53.4273	44.9221	29.9882	14.2085	44.325
18							

ments -20 min : untreated cells (control) Omin: right after 20_{min} H2U2 treatment 20-60 min: time after treatment, Neuvering in media

-DNAPKCS

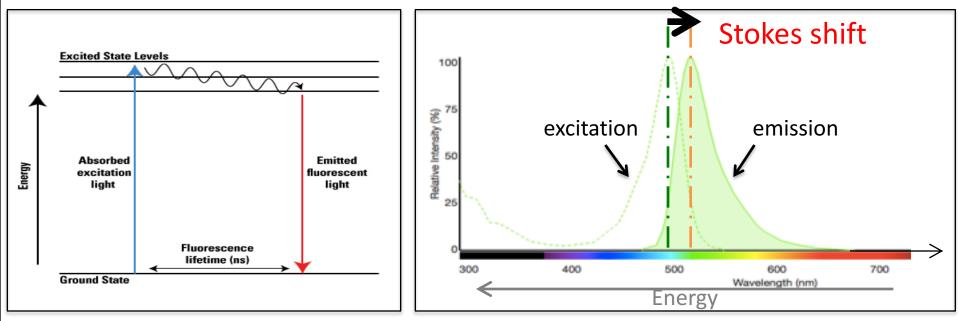
Why is fluorescence imaging so widely used in biology?



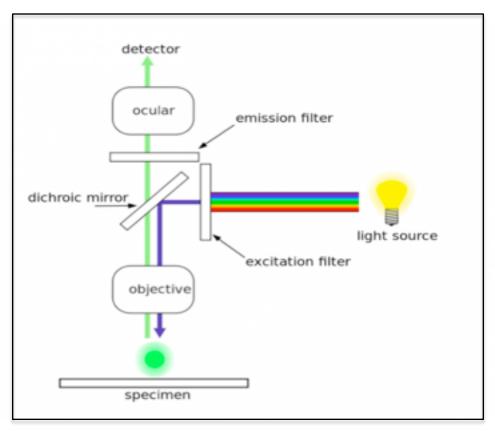
Bright-field

Fluorescence

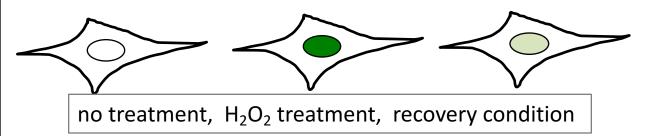
Considerations for fluorescence imaging


- Pros:
 - Low background
 - Excellent contrast
 - Multiple colors
 - Molecular and structural specificity
 - Biochemical sensitivity for functional imaging (Ca²⁺, pH)
 - Genetic expression
 - Specialized techniques for 3D and high-resolution imaging
- Cons:
 - Expensive equipment: laser, filters, sensitive cameras, ...
 - Toxicity to cells
 - Need for fixing or gene manipulation
 - Does the added fluorophore moiety impair biological function?

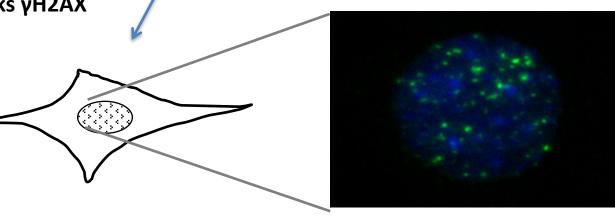
Physical principles of fluorescence


Jablonski diagram

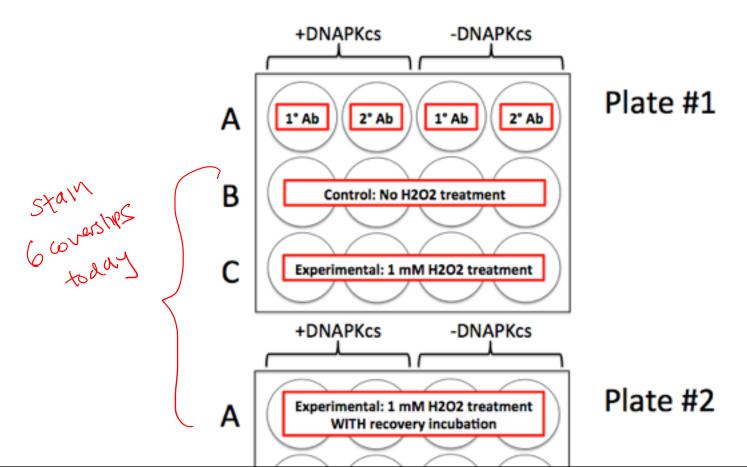
Stokes (red) shift of emission wavelength


longer wavelength = lover energy

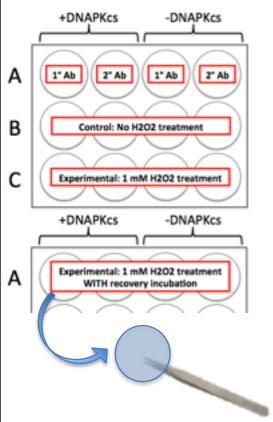
Epi-fluorescence microscope


- Our secondary antibody
 - Excitation max 488 nm
 - Emission max 525 nm
- Filter set (cube) FITC
 - Selects/reflects <u>blue</u>light
 - Transmits <u>quen</u>light
- Emission filter
 - Allows ~90% of emitted green light to pass through
 - Attenuates excitation light
 by a factor of ~10⁶

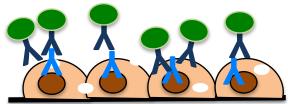
Measuring DNA damage via yH2AX Assay


γH2AX = phosphorylated H2AX histone, indicative of DSBs (and potentially other types of DNA damage)

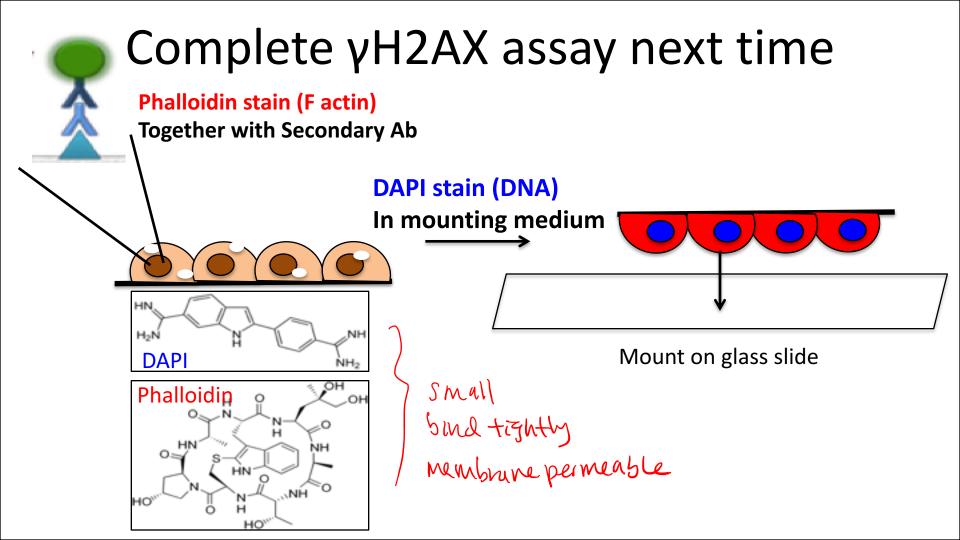
Fix cells and stain with antibody that marks yH2AX



Blue: DNA Green: γH2AX staining

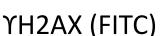

Conditions in yH2AX assay

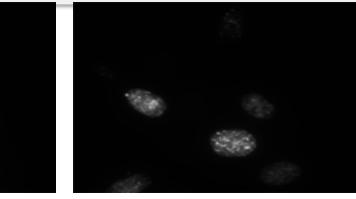
Practically using immunofluorescence: γH2AX assay to detect double-strand DNA breaks

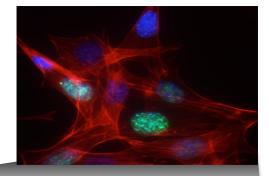


Secondary Ab (Alexa 488)

Wash




γH2AX Data Analysis


What is the total amount of γH2AX signal of each nucleus?

- Use DAPI channel to identify nucleus
- Use ImageJ to quantify total FITC (γH2AX) fluorescence in each nucleus
- Normalize fluorescence intensity by area of nucleus

Nuclei (DAPI)

In-class paper discussion

- Consider discussion guidelines on wiki while reading the paper
- Contributing to the discussion is impt. for your participation score

Cell Cycle 12:6, 907–915; March 15, 2013; © 2013 Landes Bioscience

Single-cell microarray enables high-throughput evaluation of DNA double-strand breaks and DNA repair inhibitors

REPORT

David M. Weingeist,^{1,†} Jing Ge,^{1,†} David K. Wood,² James T. Mutamba,¹ Qiuying Huang,³ Elizabeth A. Rowland,¹ Michael B. Yaffe,^{1,3,4,5} Scott Floyd^{4,6} and Bevin P. Engelward^{1,*}

Major assignments for Mod1

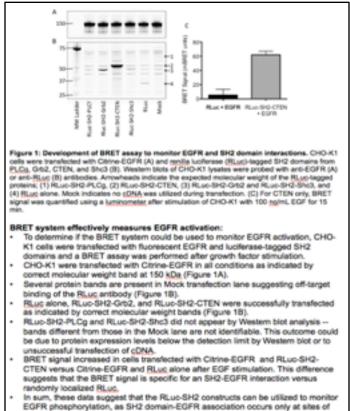
- Data summary draft
 - due by 10pm on Men., October 8 on Stellar

with lab partner(s)

(filename: TeamColor_LabSection_DS.pptx)

revision due by 10pm on Sat., October 20

Summary content


- 1. Title
- 2. Abstract
- 3. Background & Motivation
- 4. Figures, Results & Interpretation
- 5. Implications & Future Work
- Mini presentation due by 10pm on Sat., October 13
- Blog post for M1 due by 10pm on Tues., October 🗐 10

M1 Data summary Architecture

Figures: Title • (schematic?) Abstract **Background and** « Cell loading optimization (cell line difference) « Comet Chip dose response Motivation nterpretation **Results and** · Comet Chip repair (Engelvard lab) • YHZAX data / representative image (S) Implications and **Future work** References

You already have most of the information you need. Start working on it now!

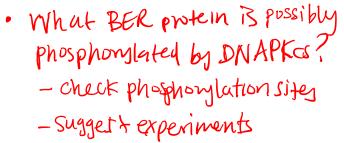
Example Results slide (from Wiki)

 In sum, these data suggest that the RLuc-SH2 constructs can be utilized to monitor EGFR phosphorylation, as SH2 domain-EGFR association occurs only at sites of EGFR tyrosine phosphorylation. Next, we determined the dynamic range of the BRET assay.

- In PowerPoint
- Limit figure size
- Bullet points

HW M1D7: Implications & Future Works

Implications and Future Work: potential topics [edit]


- Topic: Did your results match your expectations?
 - . If no, provide a putative explanation. If yes, how can you further test if your hypothesis is correct?

Specific to your research

- Topic: Based on the results, whether they matched your expectations or not, what experiments might you recommend next?
 - Follow-up experiments could distinguish between competing explanations of a given outcome or broaden the sample set for a
 question you already asked, to give just two examples.

Broad in scope

- Topic: How might this assay be improved?
- Topic: How might this assay be used as a research tool? in the clinic? in industry?

In your Data summary tie together (and mirror) your background and motivation, and implications and future work

Tips on writing Implications & Future Work

- Start with a very similar paragraph to the last paragraph in your Background/Motivation (restate major results and broad implications)
- Follow same order as in Figures/Results
 - Describe your conclusions from your data
 - Describe caveats and suggest remedy
 - Identify unknowns and speculate within reason
 - Don't make huge generalizations or overreach
- Propose future experiments, identify new questions that arise
- Come back to (the same) big picture topic introduced in background

In lab today

- Obtain aliquots and staining chamber from front bench
- Begin staining coverslips
- Paper discussion with Noreen
- Work on Data Summary in down time