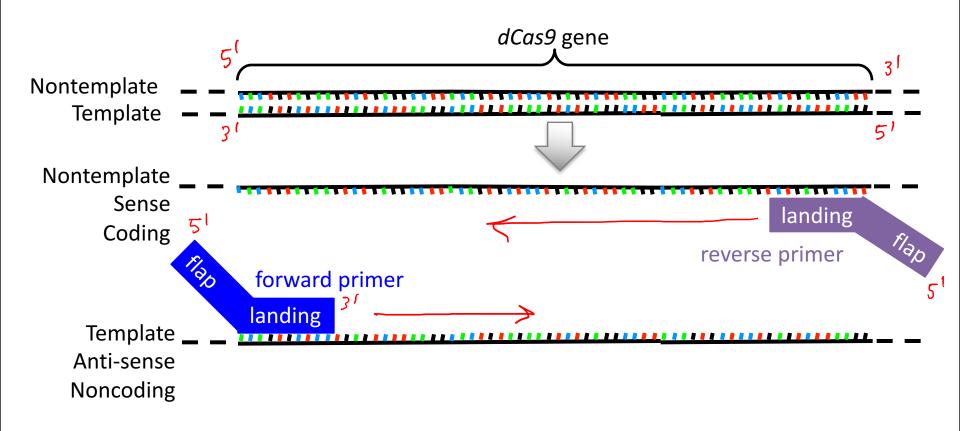

M2D1: Complete *in silico* cloning of dCas9 & actual confirmation digest

- 10/11/18
- 1. Design primers to dCas9
- 2. In silico PCR amplification, digest, and ligation
- 3. Actual (wet-lab) diagnostic digest of pdCas9

(Almost) done with Mod1!

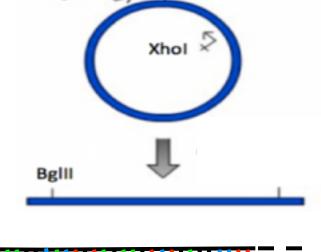
- Mini-presentation
 - due 10pm on Saturday, October 13
 - You don't have to be exhaustive;
 tell a focused story
- Data summary
 - ✓ draft due 10pm on Wednesday, October 10
 - revision due 10pm on Saturday, October 20th
- Blog post
 - due 10pm on Thursday, October 11th



How is DNA engineered?

- 1. PCR amplification of DNA:
 - · specific gene of interest
 - * dNTPS
- ρυγγνενασε 2. Digestion:
 - · restriction enzymes (endonucleases)
 - o sticky (or blunt) ends
- 3. Ligation:
 - · DNA Ligase
 - esculs backbone
 - · phosphodiester bond

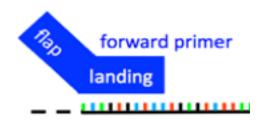
1. PCR amplification of DNA Defining terminology


top strand 5' -> 3'

1. PCR amplification of DNA Designing primers

Noncoding

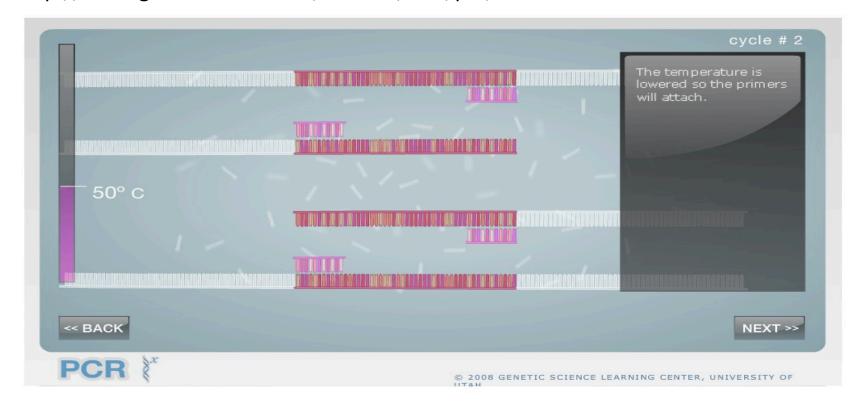
- Landing sequence: match to dCas9
- Flap sequence: contains endonuclease recognition sequence and junk DNA



1. PCR amplification of DNA

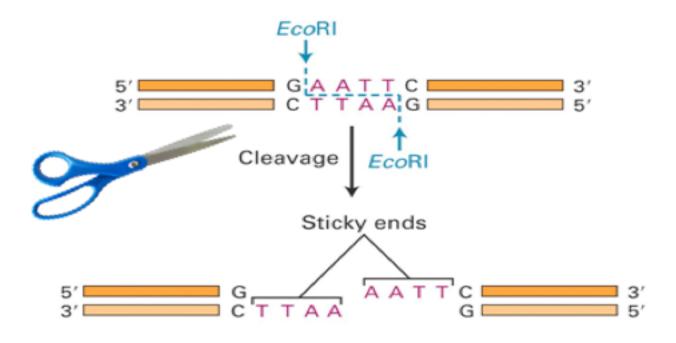
Primer design guidelines

- Length: 17-28 base pairs
 - long enough to be specific, short enough for easy annealing
- GC content: 40-60%
 - GC has _____ hydrogen bonds; AT has _____ hydrogen bonds
 - GC clamp at ends
- T_m(primer) < 65 °C
- Avoid secondary structures
 - hairpins
 - complementation w/in primer sequence
- Avoid repetitive sequences
 - Max of 4 di-nucleotide repeats (ex. ATATAT)
 - Max of 4 bp in a run (ex. GATGGGG)

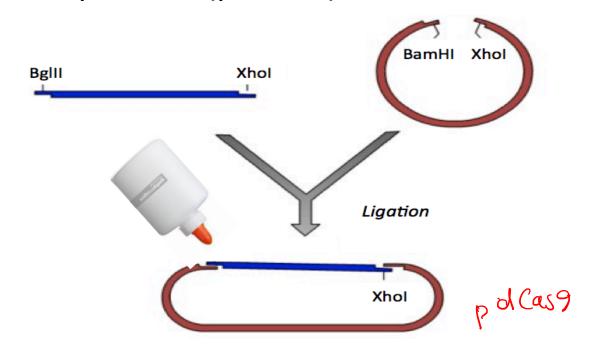

1. PCR amplification of DNA

Three major PCR steps—which temperature & why?

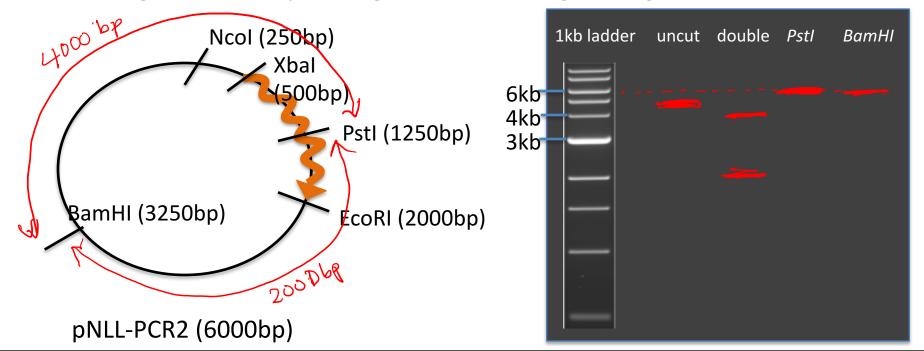
- Melt
 - 95 °C - break hydrogen bonds
- Anneal
 - $T_m(primer) = \frac{L}{2}$ primer annealed to target - $T_{anneal} \sim T_m(primer) - 5^{\circ}C$
- Extend
 - 72 °C (for Taq)
 - 1000 bases/min


Leslie's favorite PCR animation

http://learn.genetics.utah.edu/content/labs/pcr/


2. Digestion

Restriction endonucleases create sticky ends on dCas9 insert and plasmid backbone


3. Ligation

Insert dCas9 into expression vector (backbone) to create new plasmid (pdCas9)

Confirmation digest considerations

- Do you have access to the enzymes?
- Are the two enzymes compatible?
- Are fragments easily distinguished on an agarose gel?

M2D2 homework—Sign up for Journal Club

- Sign up on wiki for which day you will present:
 M2D4 (October 23rd) or M2D6 (October 30th)
- Pick 1 of 20 papers, or suggest your own
- Reserve paper by adding name next to it [Bagnall/WF/TeamColor]
 - First come, first served!
 - Only one T/R and one W/F student per article
 - Don't pick a paper randomly

Slot	Day 4 (T/R)	Day 6 (T/R)	Day 4 (W/F)	Day 6 (W/F)
1				
2				
3				
4				

M2D2 homework—Make a presentation slide

To help you prepare for the Journal Club presentation, you will craft 1-2 slides using this article by Ji. et al. to present the data from Figure 2.

- Your slide(s) should show the data and highlight the key finding(s).
- The information should be clear and large enough to read.
- Keep text to a minimum.
- The title should state the take-home message of the data that are shown.

Today in lab

- 1. Reproduce in silico (in Benchling) the cloning of pdCas9
 - Design primers that would amplify the gene dCas9
 - Depict PCR amplification product
 - Digestion of dCAS9 PCR product and vector by restriction enzymes
 - Ligation of insert and vector
- 2. Set up confirmation digests of pdCas9 for agarose gel electrophoresis (start at 3pm)
 - Choose restriction enzymes for diagnostic digest
 - Calculate volumes of digest components
 - Set-up digest and leave overnight at 37°C