Lecture Slides for Thursday April 2nd

11:05 AM EDT by Zoom

https://mit.zoom.us/j/348659452

For audio you can use your computer or call:

US : +1 646 558 8656 or +1 669 900 6833

Meeting ID: 348 659 452

International Numbers:

https://mit.zoom.us/u/adLEbsadSS

Note: class will be recorded and posted for later viewing.

My Revised Lecture Schedule

Date	Торіс
March 31 st	Cluster, PCA
April 2 nd	RNA-Seq
April 7 th	Transcriptional Regulation

Reminders on remote education:

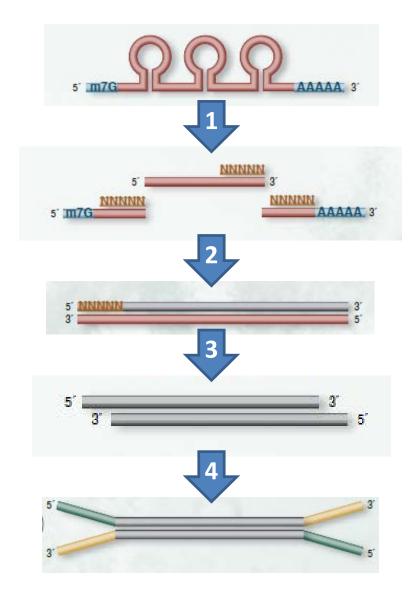
- This class is being recorded. We do not intend for anyone outside the class to access the recording, but ...
 - If you are concerned, please turn off your video and send us an email.
- Please turn on your camera and dress appropriately!
- Keep the session number handy in case you loose your connection: 348-659-452
- Remember you can join by phone for audio only if your computer malfunctions. +1 (646) 558-8656
- Feel free to use the chat function to talk to each other – but remember, all chats are recorded and will be posted with the lecture.

RNA-Seq Topics

- Overview of experimental steps for RNA-Seq
- Deriving expression levels from sequence data
- Gene Ontology
- Statistical significance

Experimental Design for RNA-Seq

- Goal of RNA-Seq:
 - To measure the expression of all genes in a sample
- Sequencing machines are great but have limitations:
 - They work on DNA, not RNA
 - They are best for short fragments



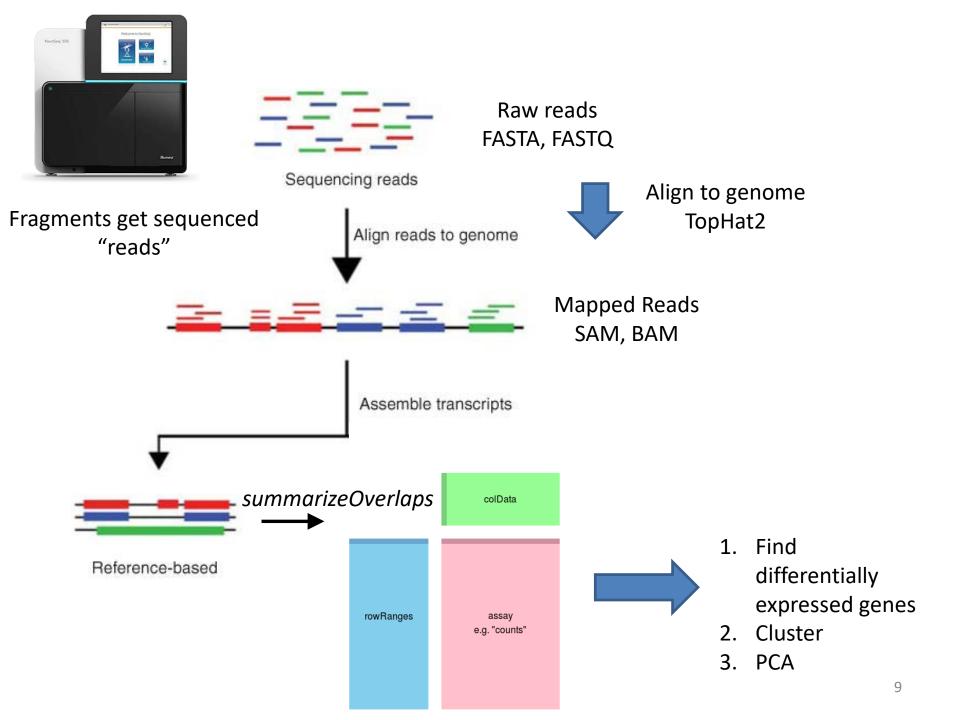
NEBNext[®] for Illumina[®]

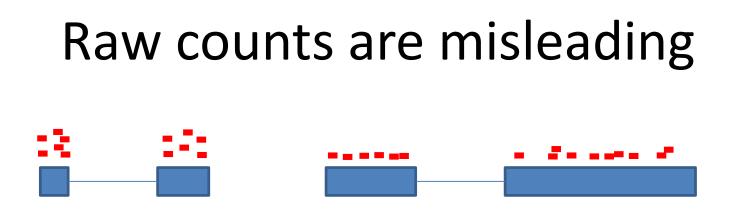
NGS SAMPLE PREPARATION

- 1. Fragment RNA and prime with random DNA primers
- 2. Synthesize second strand with Reverse Transcriptase
- 3. Remove RNA and synthesize second strand of DNA
- 4. Ligate adaptors for sequencing

Outline

- Overview of the steps of RNA-Seq
- Deriving expression levels from sequence data
- Gene Ontology
- Statistical significance





- 1. A long transcript with a low level of expression will still produce more sequence reads than a short, highly expressed transcript.
- 2. An experiment that is sequenced more deeply will make all genes appear to be expressed at higher levels

To correct for this, we use "Reads per Kilobase Million (RPKM)"

Gene	Length in KB	Replicate 1	Replicate 2	Replicate 3	
A	2	1.0E6	1.2E6	3.0E6	
В	4	2.0E6	2.5E6	6.0E6	
С	10	0	0	1.0E5	
Total reads		3.0E6	3.7E6	9.1E6	
Reads/1,000,000		3	3.7	9.1	

0.333

0.667

0

Α

В

С

Reads

million

per

0.324

0.676

0

0.330

0.659

0.011

Raw reads

- Count the number of reads in each sample in millions.
- Divide reads for a gene by the number of reads in the replicate (in millions)
- Divide by gene length in kilobases

Reads per		Replicate 1	Replicate 2	Replicate 3
kilobase million RPKM	А	0.167	0.162	0.165
	В	0.167	0.169	0.165
	С	0.00	0.00	0.001

Gene	Length in KB	Replicate 1	Replicate 2	Replicate 3
A	2	1.0E6	1.2E6	3.0E6
В	4	2.0E6	2.5E6	6.0E6
С	10	0	0	1.0E5
Total reads		3.0E6	3.7E6	9.1E6
Reads/1	,000,000	3	3.7	9.1
Reads	А	0.333	0.324	0.330
per	В	0.667	0.676	0.659
million	С	0	0	0.011
Reads		Replicate 1	Replicate 2	Replicate 3
per		•		
kilobase	e A	0.167	0.162	0.165

0.167

0.00

million

RPKM

В

С

0.169

0.00

0.165

0.001

This step corrects for sequencing depth. Note that numbers are now more consistent across replicates

This step corrects for gene length. Note that genes A and B have similar RPKMs but very different raw read counts. 12

Other ways to report transcripts

• **RPKM**: Reads Per Kilobase Million

- This is what we just discussed

- FPKM: Fragments Per Kilobase Million
 - In "paired-end" sequencing, the fragments are sequenced from each end. Most of the time you detect both ends, but not always. FPKM reports results for the original DNA fragment regardless of whether you detected one or two ends

Other ways to report transcripts

- **TPM**: Transcript per million
 - Provides a more accurate estimate of the relative molar concentration of transcripts
 - Just as easy to compute
 - Described in detail in the reference below:

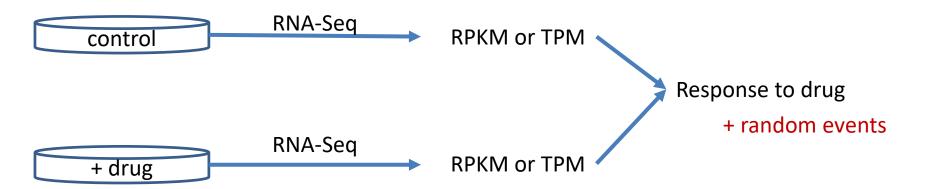
<u>Theory Biosci.</u> 2012 Dec;131(4):281-5. doi: 10.1007/s12064-012-0162-3. Epub 2012 Aug 8.

Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples.

Wagner GP¹, Kin K, Lynch VJ.

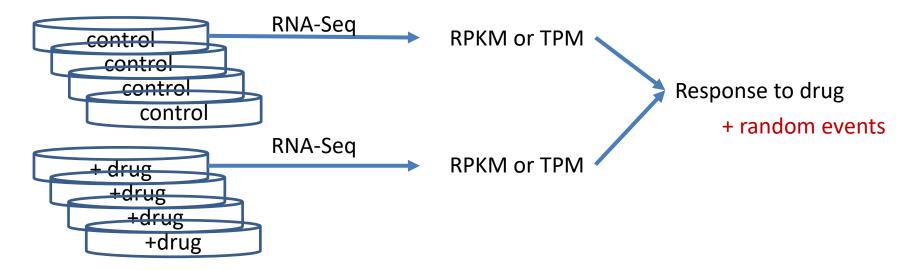
Differential expression

DESeq2: tests whether a difference in gene expression is a response to a change in condition vs. a random fluctuation



Differential expression

DESeq2: tests whether a difference in gene expression is a response to a change in condition vs. a random fluctuation



Do your data make sense?

- Technical replicates should be very similar (R^2 > .9)
- Biological replicates should cluster together

Interpreting your results

- A) cholesterol biosynthesis
- (B) the cell cycle

Time

A

Genes

- C) the immediate-early response
- (D) signaling and angiogenesis
- E) wound healing and tissue remodeling

lyer et al. Science 1999

Outline

- Overview of the steps of RNA-Seq
- Deriving expression levels from sequence data
- Gene Ontology
- Statistical significance

Biological Insights

•What types of genes are being differentially expressed?

Controlled vocabulary to describe genes:

- Biological process
 - signal transduction; glucose transport
- Cellular component
 - nucleus; ribosome; protein dimer
- Molecular function
 - binding; transporter

A gene often will have several annotations

Total annotations: 121; showing: 1-10 Results count 10 •				
	Gene/product	Gene/product name	Annotation qualifier	GO class (direct)
	BRCA2	Breast cancer type 2 susceptibility protein		telomere maintenance via recombination
	BRCA2	Breast cancer type 2 susceptibility protein		double-strand break repair via homologous recombination
	BRCA2	Breast cancer type 2 susceptibility protein		double-strand break repair via homologous recombination
	BRCA2	Breast cancer type 2 susceptibility protein		nuclear chromosome, telomeric region

http://amigo.geneontology.org/amigo/gene_product/UniProtKB:P51587

Annotations usually have many genes

	al gene product(s sults count 100): 15; showing: 1-15 •
	Gene/product	Gene/product name
	NSMCE2	E3 SUMO-protein ligase NSE2
	XRCC3	DNA repair protein XRCC3
	RAD51C	DNA repair protein RAD51 homolog 3
	ERCC1	DNA excision repair protein ERCC-1
	XRCC1	DNA repair protein XRCC1
	RAD50	DNA repair protein RAD50
	ERCC4	DNA repair endonuclease XPF
	TERF2	Telomeric repeat-binding factor 2
	TEP1	Telomerase protein component 1
	BRCA2	Breast cancer type 2 susceptibility protein

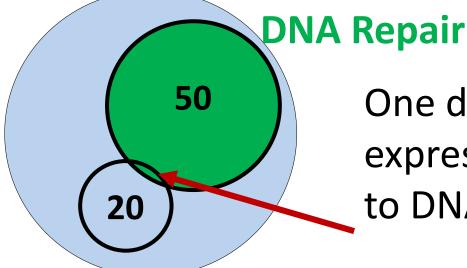
http://amigo.geneontology.org/amigo/search/bioentity?q=*:*&fq=regulatesructural maintenance of chromosome_closure:%22GO:0000722%22&sfq=document_category:%22bioentity%22protein 5

Outline

- Overview of the steps of RNA-Seq
- Deriving expression levels from sequence data
- Gene Ontology
- Statistical significance

- Your startup just developed a new drug, but related compounds cause cancer
- You want to know if it's safe
- Your idea: test it on cell lines and see what genes change in expression
- You find that it activates some genes involved in DNA Repair
- Could it be causing DNA damage?

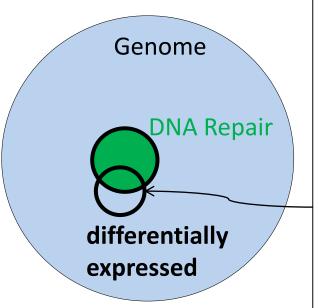
Genome (100)



One differentially expressed gene is related to DNA repair.

Differentially expressed

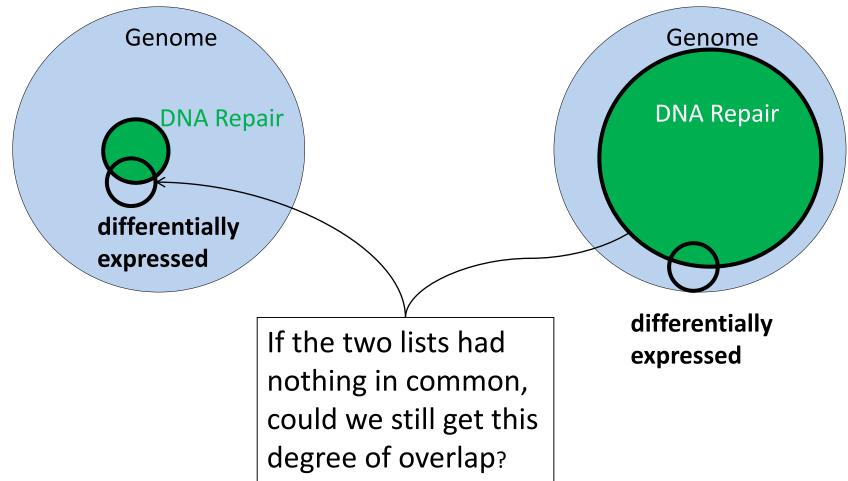
Should I worry that our drug causes DNA damage?

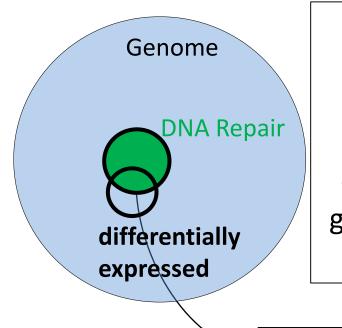


If I get many **more** repair genes than I would expect by chance, I need to find out if my drug is causing DNA damage.

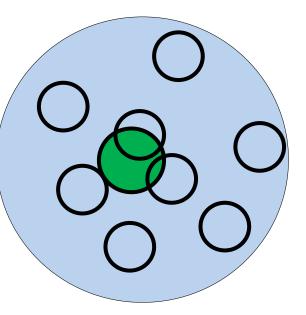
In other words: are the differentially expressed genes **enriched** for ones involved in DNA repair?

The significance depends on the size of the lists.

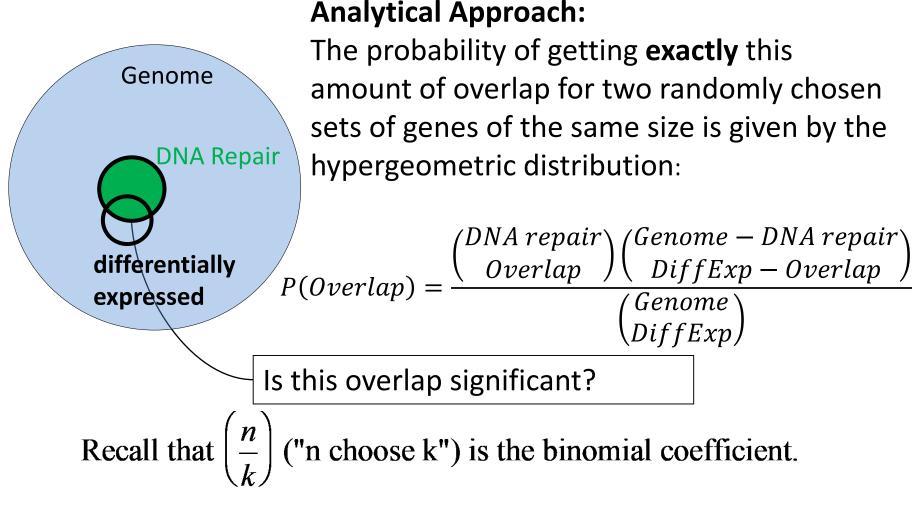




Empirical approach: Find the distribution of observed "green genes" by random sampling



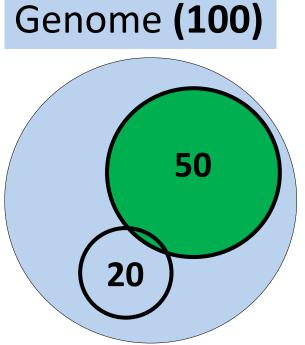
Is this overlap significant?



= the number of ways to choose k items from a set of n.

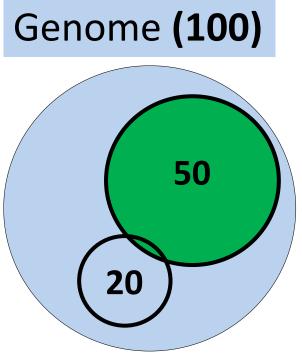
29

How you might use the HG test:



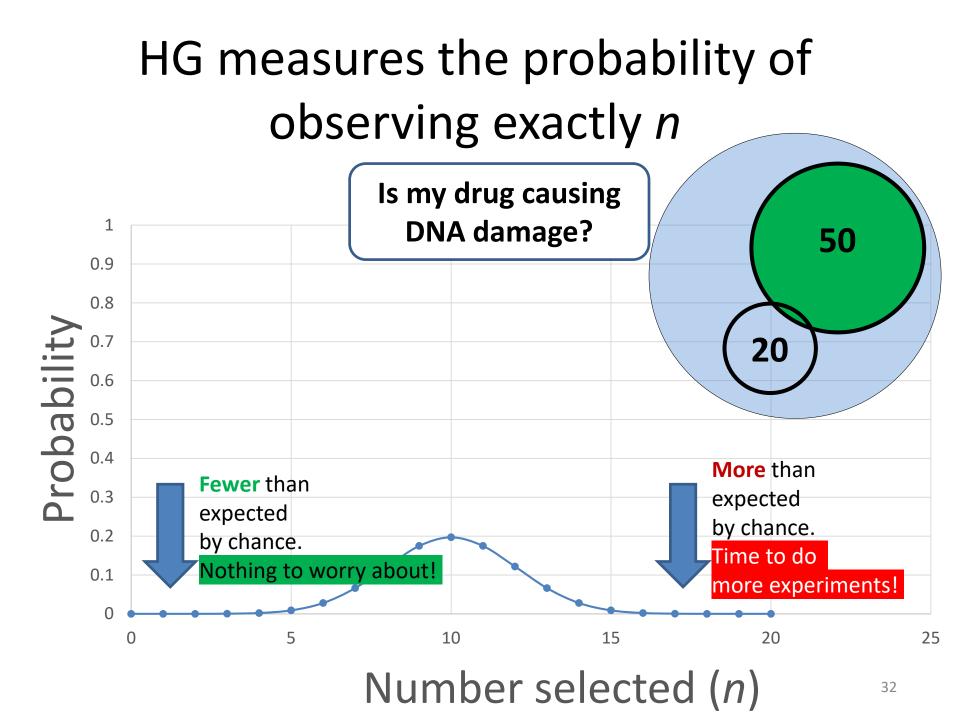
Differentially expressed

- Your startup just developed a new drug, but related compounds cause cancer
- You want to know if it's safe
- Your idea: test it on cell lines and see what genes change in expression
- You find that it activates some genes involved in DNA Repair
- Could it be causing DNA damage?

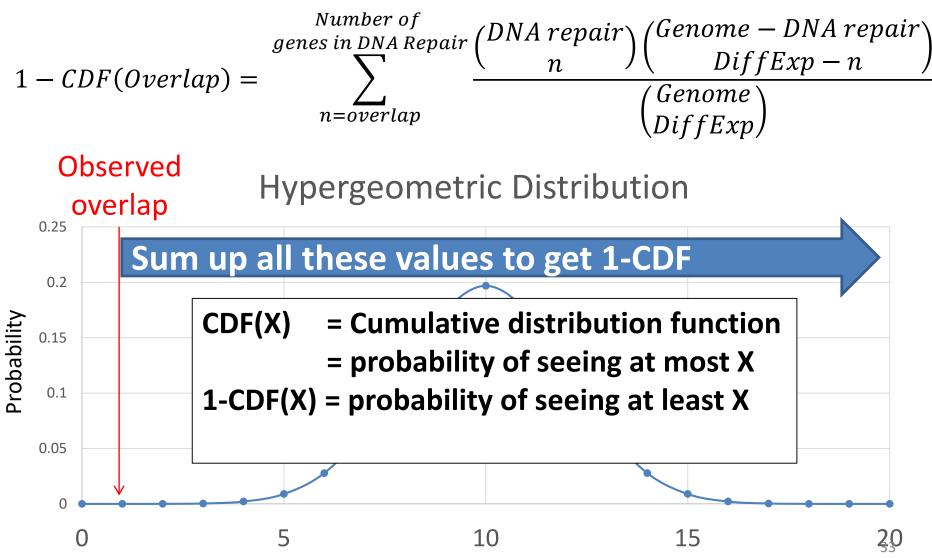


Differentially expressed

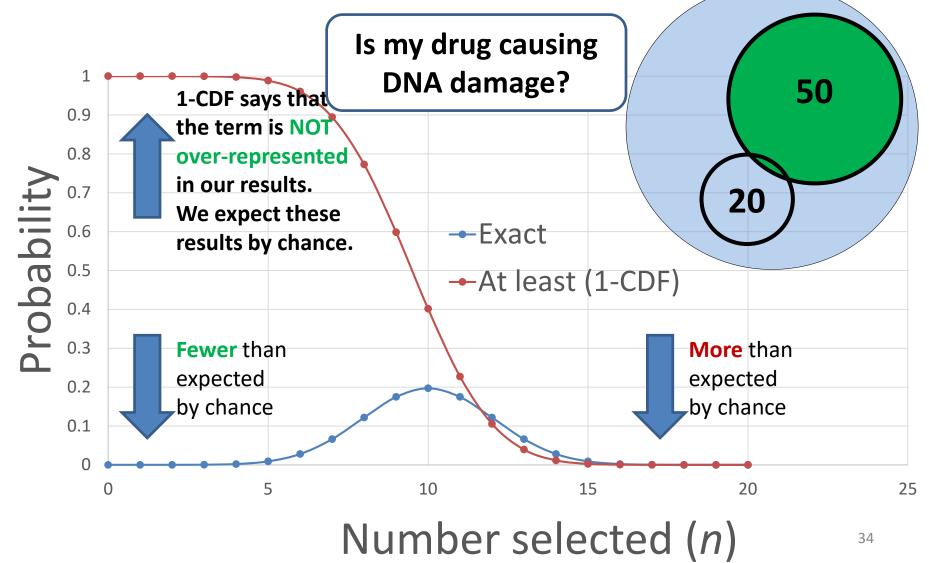
- Usually, we wish to test if a term is "enriched" in our data.
 - But the hypergeometric gives
 the probability of getting
 exactly this amount of overlap
 for two randomly chosen sets
 of genes of the same size.
- Using the CDF, we can ask if we see <u>more</u> of a term than we would expect under the null model.



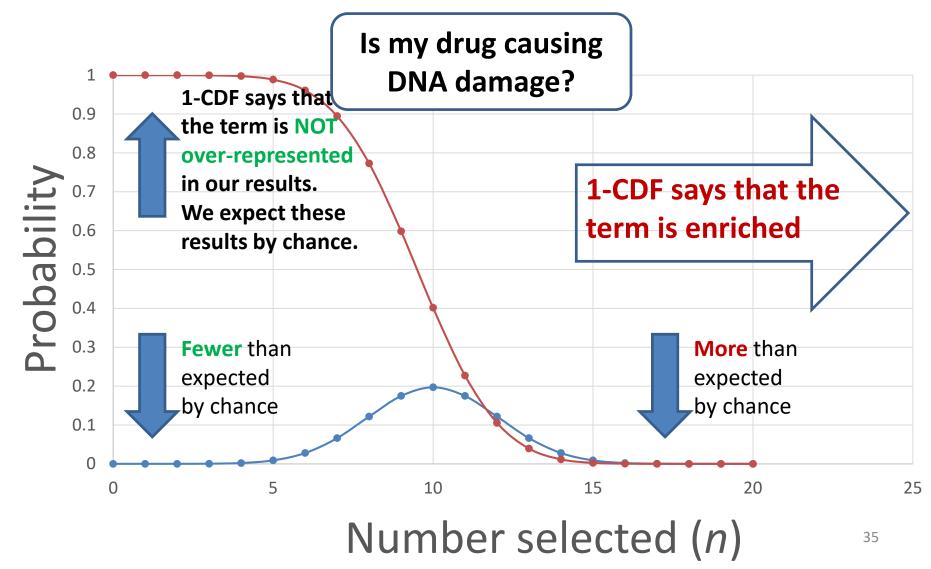
The CDF helps us find enriched terms



(1-CDF) measures the probability of observing *n* or more

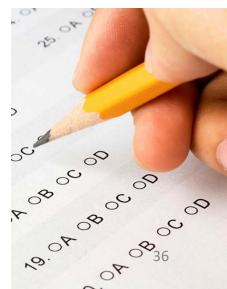


CDF measures the probability of observing at least *n*



Testing Multiple Hypotheses

- Example: Filter GO terms using a p-value threshold of 0.01
- By definition, the null-hypothesis has a 1% probability of being correct <u>for each</u>
 <u>test.</u>
- There are roughly 30,000 terms in GO.
- At this level, we expect roughly 300 false positives!



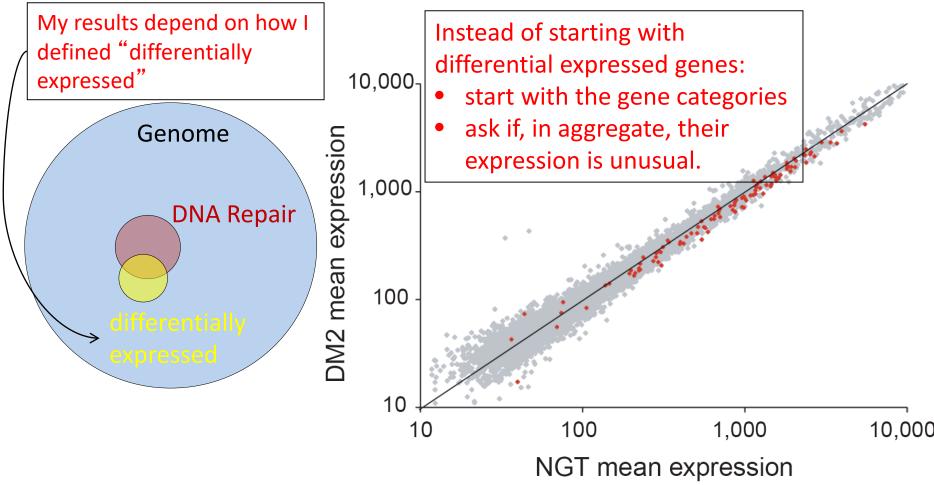
Multiple Hypotheses

- A simple solution: require that the p-value be small enough to reduce the false positives to the desired level.
- This is called the Bonferroni correction.
- In our case, we would only accept terms with a

$$p \le \frac{0.01}{30,000} = \frac{desired \ threshold}{number \ of \ tests}$$

- Since our tests are not all independent, this is very conservative, and will miss many true positives
- More sophisticated approaches exist, such as controlling the "false discovery rate".

Aggregate score statistics



Mootha et al. (2003). Nature Genetics **34**, 267 – 273. doi:10.1038/ng1180

Aggregate score statistics

http://www.broadinstitute.org/gsea/

Please register to download the GSEA software and view the MSigDB gene sets. After registering, you can log in at any time using your email address. Registration is free. Its only purpose is to help us track usage for reports to our funding agencies.

39