M1D1: Prepare microwell array and practice tissue culture

09/12/17

- 1. Lab Orientation Quiz
- 2. Pre-lab Discussion
- 3. ½ class goes to the Tissue Culture Room
- 4. ½ class prepares a CometChip

20.109 Office hours

Noreen

- Monday 2pm-5pm
- in 16-317

Leslie

- Friday 9am-10am
- Friday 3pm-4pm
- in 56-341c

Josephine

- Thursday 2pm-3pm
- in 56-341c

by appointment: nllyell@, lesliemm@, joshaw@

M1 major assignments

- Data summary (15%)
 - in teams, on Stellar
 - draft due 10/9, final revision due 10/22
 - bullet points, .PPTX
- Mini-presentation (5%)
 - individual, video via Gmail
 - due 10/14
- Lab quizzes
 - M1D5 and M1D7
- Notebook (part of 10% Homework and Notebook)
 - one day will be graded by Eric on M1D7
- Blog: http://be20109f17.blogspot.com/ (part of 5% Participation)
 - by 10/23

Overview of Module 1: Measuring Genomic Instability

1. Optimize comet chip assay

Test loading variables

2. Use comet chip assay to measure DNA repair

Measure effects of MMS and H₂O₂ on BER

- 3. Use immuno-fluorescence assay to measure DNA repair
- Examine effect of MMS and H₂O₂ on DSB abundance

This week: Creating a CometChip and optimize loading cells

Next week: test role of biochemical factors (mutagens) in genomic stability (DNA damage)

The CometChip layers

Mouse Embryonic Fibroblast Isolation

Tissue culture sterile technique

- **70% ethanol** everything:
 - wipe cabinet before and after use
 - wipe everything that enters the cabinet
 - do not spray cells with EtOH
- Do not disturb air flow:
 - Do no block grille or slots
 - Minimize side-to-side arm movements
 - Work > 6" away from sash
 - Leave blower on always
- Do not talk into incubator!
- Only open sterile media in hood

Mammalian cell culture medium

What do cells need to survive? grow, divide and viable

Food:

• DMEM (Dulbecco's Modified Eagle's medium) defined

glucose amino acids pH buffer salts vitamins

FBS (fetal bovine serum) undefined
 growth factors
 cytokines

lipids cholesterol

Non-food:

- antibiotics:
 - penicillin
 prevent bacterial growth
 - streptomycin

Mammalian cell culture terminology

confluence density

split ~80% confluent
 splitting

 sub culturing

 put cells on new dish

Low Density

High Density

seeding

20-40% confluent culture and putting on new flask

General steps for splitting cells +WHY?

- 1. Look at cells, estimate confluence
- 2. Rinse with PBS wash away debris, dead cells, removing anti-trypsin agents
- 3. Detach cells with trypsin(enzyme) break substrate adhesions
- 4. Count cells seed specific number in new vessel
- 5. "Seed" new culture vessel give them room to divide and grow

Counting Cells

- \$ Hemocytometer:
 - Trypan blue:
 - # cells / mL = 10,000 x
 average of 4 corners

$$\frac{16}{4} = 4$$
 $\frac{4}{4} \times 10,000 = 40,000 \text{ cells/mL}$

Today in lab:

- 1. 4 teams into tissue culture room to split MEFs (Red, Orange, Yellow and Green)
- 2. 4 teams start preparing CometChip (Blue, Pink, Purple and White)
- 3. Make sure to keep notes in Benchling!
- Watch Engleward lab JOVE video during downtime (I will email link.) On the wiki: Mod1 landing page
- M1D2HW: Create a M1D2 template for your benchling notebook and turn in a printed copy.

Adding collaborators to Benchling

