20.109 Module 2

Lecture #4: Introduction to screening: concepts & principles

Instructor: Prof. Jacquin C. Niles Department of Biological Engineering Email: <u>jcniles@mit.edu</u> 2 November 2023

Learning Objectives

- A. Discovering compounds ("hits") that can interfere with the function of a selected target
 - A. How and where to search for lead compounds

- B. Knowing you've found what you're looking for ...
 - A. Assays
 - B. Choosing the right assay for the question

Drug discovery framework

- A. Basic science research and target identification
- B. Target pharmacology and biomarker development
- C. Lead identification
- D. Lead optimization and candidate selection
 - Improving pharmacologic, metabolic, safety profiles of lead toward use in humans
- Clinical research & development
 Clinical trials to establish efficacy and safety
- F. Regulatory review (FDA approval)
- G. Post-marketing
 - Surveillance (adverse effects)
 - Repurposing
 - Off-label use
- H. Medical landscape

References:

Pre-clinical

Clinical

Post-approval

- 1) Wagner et al; Nature Reviews Drug Discovery; 2018;
- 2) https://ncats.nih.gov/translation/maps
- 3) 4D Map (interactive): https://4dmap.ncats.nih.gov/#/

Target selection for drug discovery effort ...

Cerebral malaria

Microhemmorhages

Vascular occlusion **Microbe-host Interactions**

- Disease outcomes

Molecular

- DNA, RNA, protein
- Carbohydrates

Biochemical/ Metabolic pathways

Enzymes -

_

Structural proteins

Cellular behavior

- Replication -
- RBC invasion/ egress -

Red blood cells

Differentiation

... choosing a therapeutic modality

Strategies available for disrupting target function

- Small molecules ($M_w \le 500 \text{ Da}$)
- Peptides (500 Da < Mw < 5,000 Da)
- Nucleic acids (Mw ~ kDa)
 - Aptamers;
 - Antisense oligonucleotides
 - siRNAs

- Biologics* (M_w ~ kDa)
 - Proteins (antibodies, enzymes ...)

– Biological products are a diverse category of products and are generally large, complex molecules.

- Usually produced through biotechnology in a living system or cells (microorganisms, plants or animals)

- Can make intimate molecular contact with relevant target protein surface features
- Cell membrane permeable
 - Intracellular
 - Extracellular targets
- Orally bioavailable

Lipinsky's "Rule" of 5: Predicting oral bioavailability likelihood

- 1. Molecular weight is less than ~500 Da
- 2. The calculated log P value is less than fiveMeasure of lipophilicity (propensity to partition into cell membranes, fatty tissues)
- 3. There are less than five hydrogen bond donors (-NH-, -OH)

4. The number of hydrogen bond acceptors (−N6-point double bond, −O−) is less than ten

- Can make intimate molecular contact with relevant target protein surface features
- Cell membrane permeable
 - Intracellular
 - Extracellular targets
- Oral bioavailability
- Stability
 - Gastrointestinal tract (e.g., pH, enzymes, ...)
 - Metabolic transformation (liver, gut microbiome)
 - Excretion

Absorption, Distribution, Metabolism, Excretion (ADME) Concept

- Can make intimate molecular contact with relevant target protein surface features
- Cell membrane permeable
 - Intracellular targets
 - Extracellular targets
- Oral bioavailability
- Stability
 - Gastrointestinal tract (e.g., pH, enzymes, ...)
 - Metabolic transformation (liver, gut microbiome)
 - Excretion

- Cost
 - Cheaper to manufacture on large scale
 - Cheaper to distribute (little need for refrigeration, etc.)

Learning Objectives

- A. Discovering compounds ("hits") that can interfere with the function of your defined target
 - A. What, where, how to search?

- B. Knowing you've found what you're looking for ...
 - A. Assays
 - B. Choosing the right assay for the question

• Can make intimate molecular contact with relevant target protein surface features

Flavin and substrate binding sites in the *Plasmodium* DHODH protein

AMG510 bound to KRAS

References: DOI: 10.1038/s41586-019-1694-1 DOI: 10.1021/acs.jmedchem.6b00275

AMG510 (2D)

Identifying a "hit" compound to a defined protein target ...

- Uses a "screening" process
- Involves querying diverse compound collections / libraries
 - Usually quite large (≥ 50,000)
- Must be able to identify *rare, desired hits* (signal)
- Reject uninteresting compounds (noise)

Question:

How would you go about doing this? -Define:

- 1) your starting point;
- 2) process;
- 3) endpoint/ outcome

Types of screening processes we will consider in class ...

- Uses a "screening" process
- Involves querying diverse compound collections / libraries
 - Usually quite large (≥ 50,000)
- Must be able to identify rare, desired hits (signal)
- Reject uninteresting compounds (noise)

1. Target-based screening

Isolated protein target of interest➢ Biologically validated

2. Phenotypic-based screening

C. elegans

Cells or model organism

- Pathogen;
- cancer cell;
- Model organism

Hard truth: Must search broadly to find a *possible* solution

- Anti-plasmodium screen:
 - 100,000 molecules screened
 - 468 "hits" (0.5% hit rate)
- Substantial attrition at the first step in the screening process!

Identifying a "hit" compound to a defined target ...

• Uses a "screening" process

- Involves querying diverse compound collections / libraries
 - Usually quite large (≥ 50,000)
- Must be able to identify *rare, desired hits* (signal)
- Reject uninteresting compounds (noise)

- Public collections
 - Universities
 - Commercial suppliers
 - Public-private agreements
- Proprietary collections
 - Pharmaceutical companies
- Composition
 - Synthetic
 - Natural products
 - Microbial (bacterial, fungal...
 - Forests (e.g. plants, ...)
 - Ocean (e.g. sponges, ...)
 - Other environmental sources
- Considerations
 - Sampling of diverse chemical properties
 - Stability
 - Ease of synthesis/ production (cost)

Identifying a "hit" compound to a defined target: "Finding your needle in a haystack"

- Uses a "screening" process
- Involves querying diverse compound collections / libraries
 - Usually quite large (≥ 50,000)
- Must be able to identify *rare, desired hits* (signal)
- Reject uninteresting compounds (noise)

Devising a strategy to find your needle in a haystack ...

- Assay
 - Investigative procedure for <u>qualitatively</u> or <u>quantitatively</u> assessing the presence, amount or functional activity of a target entity
- Suitable for:
 - Discovery?
 - Validation?
- Components needed for an assay
 - Input(s)
 - Suitable "format" for performing required "operations"
 - Readout (to assess outcome)

Some desirable features of assays used in drug discovery ...

- Simple and inexpensive
- Fast
- Scalable
- Easily standardized (and automated)
- Reproducible
 - Accurate
 - Precise
- Sensitive
- Specific

Automation can help with achieving speed, scale and reproducibility of screens

Case Study 1: Discover inhibitors of the phenylalanyl tRNA synthetase enzyme

- Describe an assay
 - (Investigative procedure for <u>qualitatively</u> or <u>quantitatively</u> assessing the *presence*, *amount* or *functional activity* of a target entity)
- Components needed
 - Input:
 - Choose a "format" for performing required "operations":
 - Readout (to assess outcome)
- Suitable for:
 - Discovery?
 - Validation?

Case Study 2: Discover inhibitors of an essential protein of unknown function

Cellular function – unknown, but **essential for survival** Enzymatic activity -- unknown Protein interactions -- unknown

- Describe an assay
 - (Investigative procedure for <u>qualitatively</u> or <u>quantitatively</u> assessing the *presence*, *amount* or *functional activity* of a target entity)
- Components needed
 - Input:
 - Choose a "format" for performing required "operations"
 - Readout (to assess outcome)
- Suitable for:
 - Discovery?
 - Validation?

Summary

- Small molecule therapeutics make intimate molecular contact with relevant target protein surface features to interfere with their function(s)
- Libraries of small molecules from different sources and with diverse properties can be prospectively assembled to facilitate finding new small molecule drugs
- Screens can be effectively used to identify small molecules of therapeutic interest
- Important to select screening assays appropriate to the target of interest and, where possible, should incorporate what is known about its function