M1D7: Complete sub-nuclear foci assay staining and data analysis

- 1. Stats lecture, prelab
- 2. Finish staining γH2AX foci
- 3. Visit microscope
- 4. γH2AX image analysis
- 5. Data analysis—ask questions while you're here!

Announcements

- Notebook due 10/6, 10pm
 - Graded in detail: M1D5
- Extra office hours:
 - Sat. (10/6) 10am-12pm, 56-302
 - Mon. (10/8) 12-5pm, 56-302
 - Prof Engelward: Wed. (10/10),
 9am-12pm, 1-3pm
- Data Summary draft due 10pm, Wed. 10/10

γH2AX Data Analysis

What is the total amount of γH2AX signal of each nucleus?

(FITC)

(30 min recovery)

(60 min recovery)

- Use DAPI channel to identify <u>Muc لون</u>
- Use ImageJ to quantify total FITC (<u>XH2 AX</u>) fluorescence in each nucleus
- Imaged using same exposure times per channel across all

Nuclei (DAPI)

<u>45</u> ms

γH2AX Data Analysis using ImageJ

- Pick a threhold value in the DAPI channel to identify nuclei—typically good to be consistent, use same threshold on all images.
- Identify nucleus location using <u>DAP1</u> channel, & quantify fluorescence in <u>ITC</u> channel.
- Normalize fluorescence intensity by <u>area</u> of nucleus

• • •	Thresh	hold				
3.55 %						
				794		
				3190		
Default	\$	Red		\$		
d Dark backg	round	Stack histogram				
Auto Ap	ylq	Reset	S	et		

								1192×1040 p	vels, 8-bit, 1.498	Drawing of J_Dmi	001-0001 (50%)	
Perform	nan	alys	is c	on					Ċ			3
resultar	nt ex	cel	spr	rea	dsł	nee	t		$\overline{}$		7	
the region of the way	ne 2		÷	(-pos	t to	wiki Rej		Θ	-		(-
J KW	2et	0	r.	1(-	Y (uc C				K			- JONS
1 Label	Area A	lean Mi	n M	ax	Circ.	IntDen	RawintDen AR	Ro	und Sc	olidity	DAWIV	n
2 1 J_H2O2_001-0002	10213	487.021	371	1062	0.768	4973943	4973943	1.382	0.723	0.951	Kur	area
3 2 J_H2O2_001-0002	10249	591.748	391	1005	0.862	6064824	6064824	1.077	0.929	0.979		
4 3 J_H2O2_001-0002	8482	459.955	381	549	0.811	3901340	3901340	1.519	0.658	0.97		
5 4 J_H2O2_001-0002	11661	496.568	380	865	0.838	5790485	5790485	1.386	0.721	0.978		$\sim 1 $
5 J_H202_001-0002	10959	595.783	439	2451	0.729	23023658	23023658	2.062	0.485	0.96	₩	a.M/px-1
Compare: - T vs. K - Jowe poin	€ H2 +5 ->	Oz tre fired	atme s innu	nt redic	or k stehz	Re Co√ affe	renj v HzC) ₂ 3	onk	e¢,11	arb nrRec 1	1 thung units

Make stacked images

- Use ImageJ to overlay and color the images
- Don't forget a scale bar: 0.17 um/px

Actin (TxRed)

Nuclei (DAPI)

YH2AX (FITC)

Major assignments for Mod1

- Data summary draft
 - due by 10pm on Wed., October 10
 - revision due by 10pm on Sat., October 20

Summary content

- 1. Title
- 2. Abstract (pavagraph)
- 3. Background & Motivation
- 4. Figures, Results & Interpretation
- 5. Implications & Future Work Referces
- Mini presentation due by 10pm on Sat., October 13
- Lab notebook for Mod 1 due by 10pm on Sat. October 6
- Blog post for M1 due by 10pm on Thurs., October 11

20.109 Blog Post

- You will receive an invitation to join the class blog
- Possible topics listed on the blog
- Details about use:
 - Do not publish MIT logo
 - Do not post photographs with names tagged
 - Do not write malicious comments
 - Do not plagiarize

M1 Data Summary

Title: take-home message Abstract: the only page *not* in bullet points

ALL bullet points:

-background and motivation (include references)

schematics (BER)

-Results and interpretation

- Cell loading
- Comet Chip analysis (team expt.)
- Comet Chip repair data (Engelward lab)
- H2AX assay (team & class data, images)
- Schematics?

Implications and future work

References (see wiki for format suggestions)

Background & Motivation

- Impact statement
 - general background
 - describe previous work in the field
- Specific background (e.g. BER, DNAPKcs, CometChip)
 - introduce topics, pathways and specific technologies necessary to understand the experiment

T Wood et al 2010

- narrow focus to the specific question addressed in your study
- Knowledge gap/statement of problem
 - what is unknown, therefore motivating your study
- · Hypothesis & be specifie to your experiments
 - what do you propose will be the outcome of your study
- A brief preview of your findings
 - Here we show...
 - end with broad implications of the study

The meat of your paper: Results & Interpretation

- Figures and captions
 - Decide on these first
 - Use subpanels
 - Text: limited on figure, explicit in caption
 - reasonable size
 - descriptive title
 - intro sentence in caption
 - caption descriptive of image, very light on methods (Cell loading lox mege) HZAX 40K mege
- Result bullets
 - Goal / intent / purpose of experiment = intro topic sentence
 - What you did: experiments and expectations, including controls
 - What you found: quantitatively describe your result, referring to the figure
 - What does this indicate: interpret your result, what does it mean?
 - What does this motivate you to do next: transition to next experiment

Implications & Future Work

- pullet • Start with a very similar paragraph to the last paragraph in your Background/Motivation (restate major results and broad implications)
- Follow same order as in Figures/Results the for
 Describe your conclusions from your data construction

 - Describe caveats and suggest remedy
 - Identify unknowns and speculate within reason
 - Don't make huge generalizations or overreach
- Propose future experiments, identify new questions that arise
- Come back to (the same) big picture topic introduced in background

In lab today

- 1. Finish staining γH2AX coverslips
- 2. γH2AX image analysis (get files from me!)
- 3. Finish data analysis and post to wiki
- 4. Stats exercise
- 5. Continue working on Data Summary