M1D6:

Examine sub-nuclear foci abundance to measure DNA damage

- 1. Prelab discussion
- 2. Benchwork
 - Begin γH2AX staining
 - Process CometChip Images
 - Visualize CometChip results
- 3. Paper discussion

Keep track of the due dates!

Assignments for M1

- Data summary draft
 - due by 10 pm on Wed., October 11
 - revision due by 10 pm on Sun., October 22

Summary content

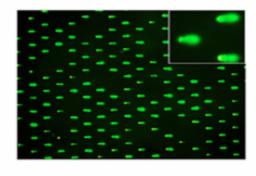
- 1. Title
- 2. Abstract
- 3. Background, Motivation
- 4. Figures, Results & Discussion, Interpretation
- 5. Implications, Future Work
- Mini presentation due by 10 pm on Sat., October 14
- Blog post for M1 due by 10 pm on Mon., October 23

Extra office hours

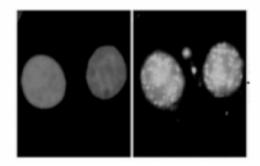
- 56-302
- Saturday, 10/7, 10am-2pm
- Wednesday, 10/11,
 10am-3pm

119-

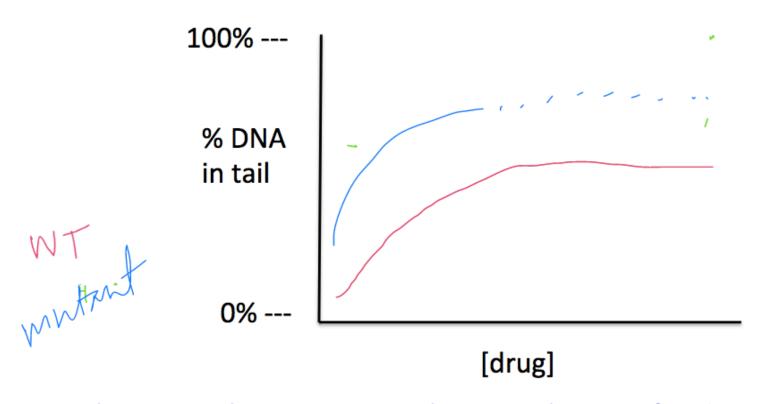
Regular office hours


- Next week Monday OH canceled
- Josephine: Thursday 2-3 pm in 56-341c
- Leslie: Friday 9-10 am and 3-4 pm in 56-341c

Overview of Mod1 experiments

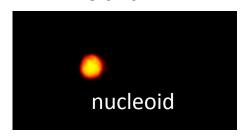

1. Optimize comet chip assay

Test loading variables


2. Use comet chip assay to measure DNA repair

Measure effects of MMS and H₂O₂ on BER

- 3. Use immuno-fluorescence assay to measure DNA repair
- Examine effect of MMS and H₂O₂ on DSB abundance


Remember your hypothesis


Incubating the Comet Chip with purified enzymes (OGG1, AAG) *REVEALS* damage not quantified otherwise (buffer control chip)

Exp2: Biochemical testing using CometChip

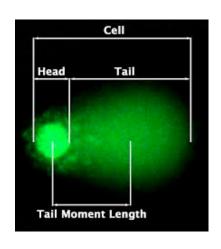
M1D6 and D7:

No damage: supercoiled

Damage: SSBs, DSBs, abasic sites, alkali labile sites

1. ImageJ

- from several images per well to one stack per well
- GenImageStacks_sin gleimage.txt

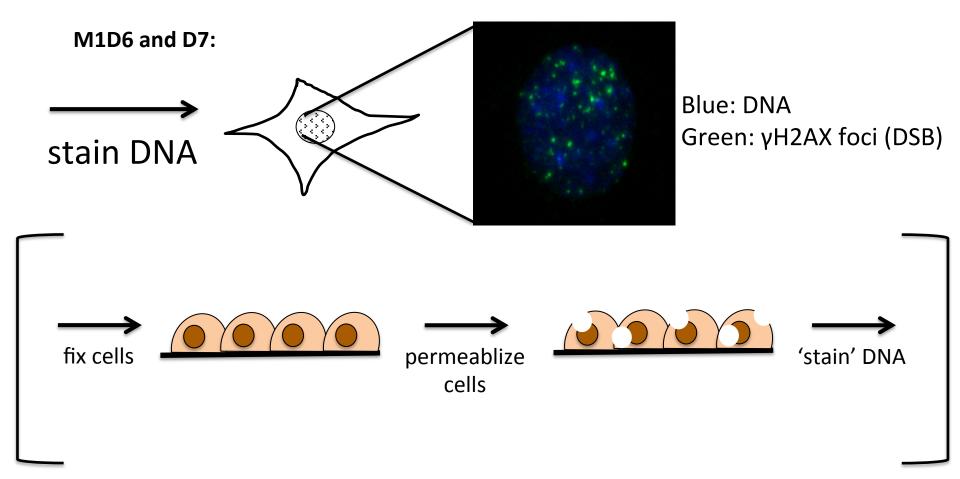

2. MATLAB

 for each comet in stack, calculates intensity of head and tail, as well as length of tail

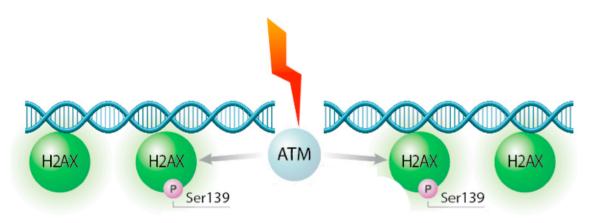
3. Excel

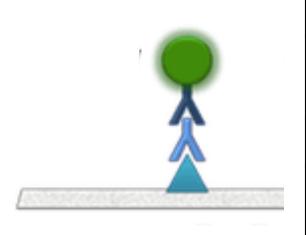
- export data from Matlab and compile
- post data to the wiki

What are the data?



	01	02	03	04	05	06
Α	7.45	7.68	11.33	16.49	34.06	29.43
В	8.59	7.33	10.03	14.49	26.58	37.04
С	6.86	8.73	11.94	18.78	34.69	37.87
D	10.37	11.93	10.77	12.14	9.68	11.71
E	14.10	10.54	9.76	10.79	11.85	10.32
F	15.28	10.51	9.53	10.36	11.67	9.29
[H2O2] (mM)	0	0.25	0.5	1	2	4
[MMS] (uM)	0	10	20	40	60	80




- Cometnumbers: how many comets were used for calculation in each well (= stack)
- %Head DNA = 100 * HeadFluorescence / (HeadFluorescence + TailFluorescence)
- %TailDNA = 100 * TailFluorescence / (HeadFluorescence + TailFluorescence)
- Olive tail moment (OTM) = (%TailDNA / 100) * (TailCenterOfMass HeadCenterOfMass)
- Tail length
- Comet length

Exp3: DSB abundance using H2AX

Antibodies used to detect yH2AX

protein of interest	A γH2AX		
primary antibody	Mouse anti-human anti-γH2AX		
secondary antibody	★ goat anti-mouse		
fluorescent dye exc./ em. wavelengths	488 / 520 nm		

Remember your hypothesis

How will the treated / not treated cells differ?

How will the recovery / no recovery cells differ?

Notes on homework due M1D7

- Complete assignment with partner(s)
- First sentence of each subsection should be a brief introductory sentence motivating the method / procedure
- Use final concentrations, not stock concentrations
- Don't include '109' specific language
- Be concise while still providing enough information for the reader to repeat the experiment
 - Example: buffer recipes and details in parentheses

Today in lab...

- Image CometChips
 - Demonstration only, use images on wiki for image processing
 - Email results to Noreen (will post to wiki)
- Complete primary staining for γH2AX assay
- Paper discussion