

Research Proposals 20.109 Communication Workshop 5

Dr. Prerna Bhargava

Dr. Sean Clarke

Helping you communicate effectively. **be.mit.edu/communicationlab**

We have seen a variety of different assignments in 20.109...

- Figures
- Titles and Abstracts
- Manuscripts
- Journal Clubs

Proposals

All assignments use the same basic communication skills:

- Figures
- Titles and Abstracts
- Manuscripts
- Journal Clubs

Proposals

- Know your audience
- Tell a story
- Convey clear logic
- Use clear, precise language and presentation

Concretely, these communication skills translate to the following:

- Clear visual data in the form of figures and slides; reducing signal to noise
- Titles as strong messages on slides
- Tell a story with a clear take-home message and conclusions
- Use hourglass structure to draw the audience in

All these help make a good proposal too!

What if you have \$1 million

to give to someone's biological engineering project?

Say you have \$1 million

What would you want to know from the person you're giving it to?

A successful proposal must convince its readers that the proposed work is **significant** and **achievable**.

Proposals are future papers (with twists)

Both

have structured sections
tell stories
include methods, controls & statistics
argue for excitement and validity

<u>Papers</u>

framed as a question outcome sounds uncertain the findings are exciting

Proposals

framed as a hypothesis outcome sounds certain innovation is exciting

The 109 proposal is a team presentation

12 minutes + Q & A

Speaking and slides

Audience: peers & teaching staff

Tell us why, what, and how

Why Identify the gap/need

What is the clear idea you propose? Impact?

How Key steps to accomplish goals ("aims")

We care about the methods: specify techniques, in vitro, in vivo, system?

Show us expected data
If things don't work, what will you do?
Have controls and work-arounds

Use slides to convey:

- a brief project overview
- sufficient background information identifying a clear problem
- a statement of the research problem and goals (specific research aims)
- details and methods for goals
- predicted outcomes, alternate approaches, needed resources
- societal impact if all goes well

Begin with background that highlights the problem and the current state

Alzheimer's affects 5.4 million Americans

• Information about disease and progression

Transition statement linking to β-amyloid plaques (written on slide and/or stated verbally)

β-amyloid plaques contribute to degeneration of nerve function

- General information about plaque origin and structure
- Block cell-cell communication
- Induce apoptosis
- Lead to generalized destruction of brain tissue

Symptoms of Alzheimer's may be alleviated by elimination of plaques

- Information about current field of research
 - Briefly, what has been done

Though some progress has been made in reducing plaques, our aim is to convert them to usable product

Novel amyloid-to-dark chocolate (ADC) enzyme recently discovered

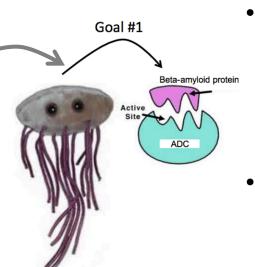
- Identified in our laboratory using a yeast twohybrid screen
- Information about ADC enzyme

Leading to a clear statement of your research problem and goals

Clear, concise research statement

Research aim: use ADC to convert β-amyloid plaques to dark chocolate

• Goal 1: Optimize the production of genetically engineered ADC using non-toxic *E. coli* strain


- 3-4 goals to prove your hypothesis
- Goal 2: Determine enzymatic efficiency of engineered ADC in vitro using harvested βamyloid plaques
- Goal 3: Measure efficacy of engineered ADC in vivo using a mouse model of Alzheimer's disease

Each goal should have a slide for what you'll do

Title of your goal

Schematic of goal/ method/ expected results

Optimize production of ADC in E. coli

- Engineer BL21(DE3) to express ADC
 - Clone ADC into pXYZ
 - Test protein expression
 - Additional steps...
- Potential setback
 - Possible solution

Key methods

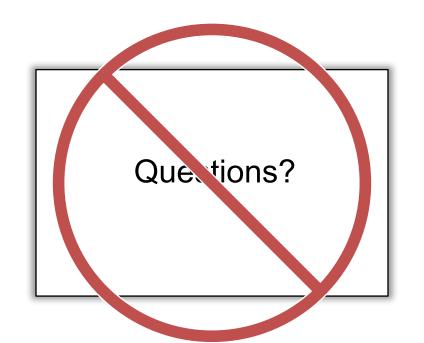
Potential limitations and alternative approaches

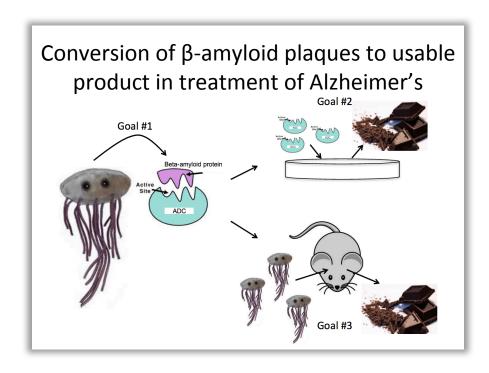
Include a slide that highlights the impact this work would have on society and science

Why is this work important? Why should someone give you money to do this work?

Remember:

You want to highlight that you are solving an important (and real) problem with an innovative solution.


And this should be clear to your audience.


Adapt to presenting as a group

- Decide who will say what
- Announce organization/transitions
 "I'll introduce <u>our Question and Aims</u>, and Prerna will talk about the Methods we'll use..."
- Stay visually quiet when you're not on
- Don't read, just use transitions and bits of text to guide yourselves
- Leave a helpful slide up on screen during Q&A
- Flip to earlier or supplementary slides as needed

PRACTICE PRACTICE

Make good use of your last slide

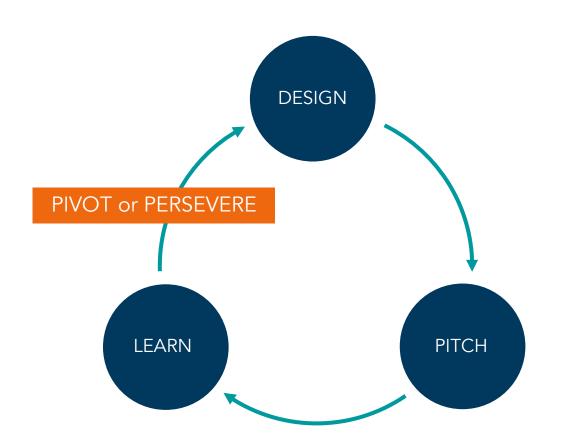
Proposals are hard!

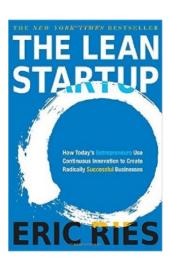
- 1. How do I come up with a good proposal topic that is feasible and significant?
- 2. What should my aims be?

How do I come up with a good proposal topic that is feasible and significant?

Spend time brainstorming as a team

Go for quantity--bring up a lot of ideas, raising your probability of coming up with a good idea

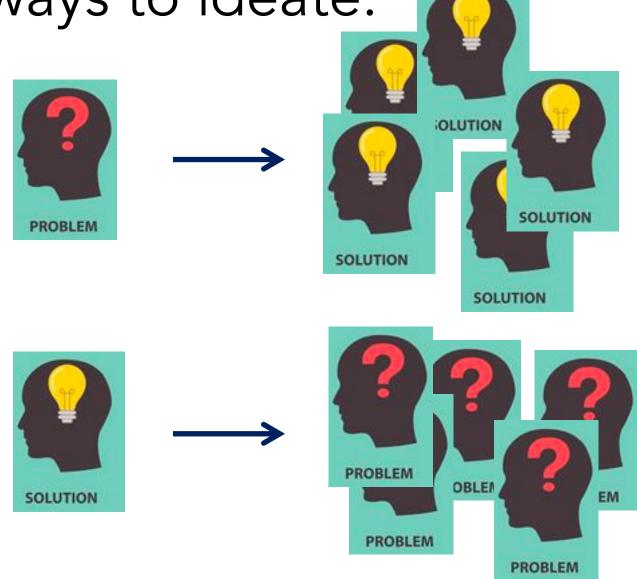

Defer judgment


Build on the ideas of others

Encourage wild ideas, be bold and creative

Stay open to feedback -- it is how you learn and grow! As you progress, pivot and be nimble

Going through feedback loops improves your design



Some things to avoid this time:

- Incremental improvements
 - A lab built a battery with zinc, I want to build a battery with nickel.

- Scope that is too big/too small
 - I want to build a rocket ship out of bacteria
 - I am going to build a genetic circuit in E. coli, requiring cloning just one gene

Two ways to ideate:

Language matters in brainstorming

And...

What if...?

Also...

(try being visual)

Unhelpful language

No...

But...

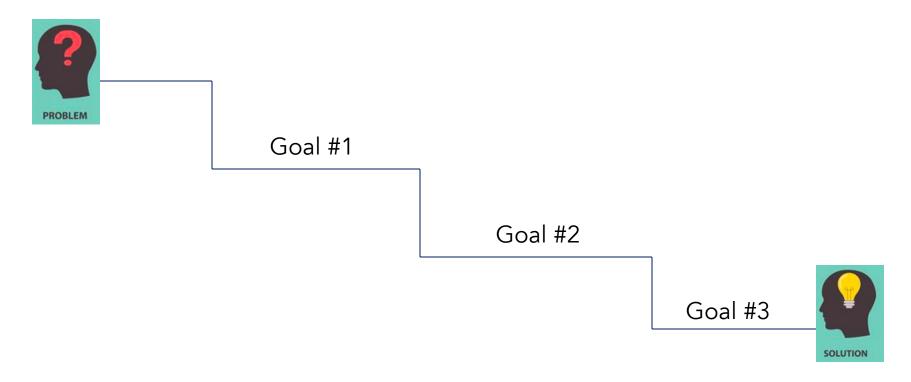
That is wrong...

That doesn't make sense...

Great.

Activity: Let's try brainstorming for 10 min. in teams

- Take the most interesting research finding you identified and talk about why you think it is an important problem to solve or an intriguing technology
- Ideate potential ways to solve your identified problem or apply the technology


This is NOT binding, so be creative!

Once you have a topic or idea, you'll need goals/aims to get there.

What are critical steps that need to be taken in order to answer your question?

best first steps logical order feasibility

Your goals should address critical steps to reach your solution

Your goals should address critical steps that allow you to reach your solution

#1 Produce ADC

Alzheimer's is a big problem; B-amyloid plaques contribute Proposal is to convert plaques with the novel enzyme ADC

#2 Determine if ADC can get rid of plaque protein

#3 Determine if getting rid of plaques can affect model Alzheimer's

Get rid of plaques to cure Alzheimer's

Activity: Let's try coming up with aims...

We don't have a good way to improve the innate immune response to bacteria We propose to study extracellular vesicles and their role in cell-cell communication between bacteria and hosts.

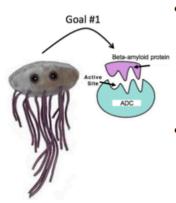
Goal #1

Background: Bacteria produce extracellular vesicles that could be involved in communication Goal #2

Goal #3

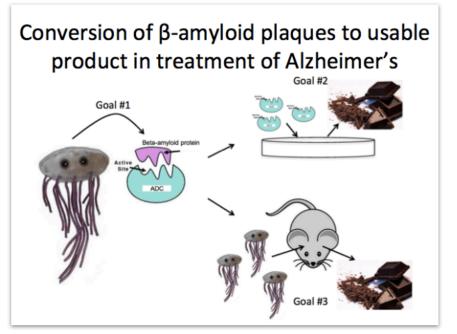
Study signals sent by bacteria to communicate with the host, potentially finding a way to protect the host

See the wiki for an example slide deck


Engineered bacteria for the conversion of amyloid plaques to dark chocolate

Shannon K. Hughes and Noreen L. Lyell

Research aim: use ADC to convert β-amyloid plagues to dark chocolate


- Goal 1: Optimize the production of genetically engineered ADC using non-toxic E. coli strain
- Goal 2: Determine enzymatic efficiency of engineered ADC in vitro using harvested βamyloid plaques

Optimize production of ADC in *E. coli*

- Engineer BL21(DE3) to express ADC
 - Clone ADC into pXYZ
 - Test protein expression
 - Additional steps...
- Potential setback
 - Possible solution

al 3: Measure efficacy of engineered ADC

Here's additional help

- Previous workshops on figures, journal clubs, abstracts, and manuscripts
- be.mit.edu/communicationlab
- NIH Small Grant Program (R03): appropriate scale
- NIAID: includes alternate approaches if first approach doesn't work
- BE Research Guide: (email Howard Silver hsilver with suggestions!)

Be sure your presentation includes:

- □ Sufficient background to orient the audience to the problem and current state of the field
- □ A strong problem statement/knowledge gap
- □ A clear proposal statement/hypothesis
- □Clear aims/goals that follow a logic leading to the end goal
- ☐ Succinct methods highlighting what you will do
- □ Alternate approaches
- ☐ Strong impact statement

Your slides and presentation should:

- ☐ Convey a single message per slide
- □ Have titles that are messages
- ☐ Only contain relevant material (reduce signal/noise)
- ☐ Include schematics to help your audience
- ☐ Be organized, with a plan about who will speak when