
Two Major Types of Electrochemical-Based Energy Storage Devices

Batteries

- Store energy in chemical reactants capable of generating charge
- High energy densities
- Many different varieties

Electrochemical Capaci

- Store energy as charge
- High power densities
- Sub-second response time

Massachusetts

Technology

Application for LIBs and Supercapacitors

- Mobile Electronic Devices
- Power-Tools
- Electrical Vehicles (HEVs and PEVs)

Requirements

- High Power for Intensity of Use
- More positive redox potential (cathode)
- Fast charge transfer kinetics (large current output)
- High Energy (High Capacity) for Length of Use
- More charge per weight/volume
- Safety
- Cost

Ma, Science, 2013 Raven UAV

Classifications of Cells and Batteries

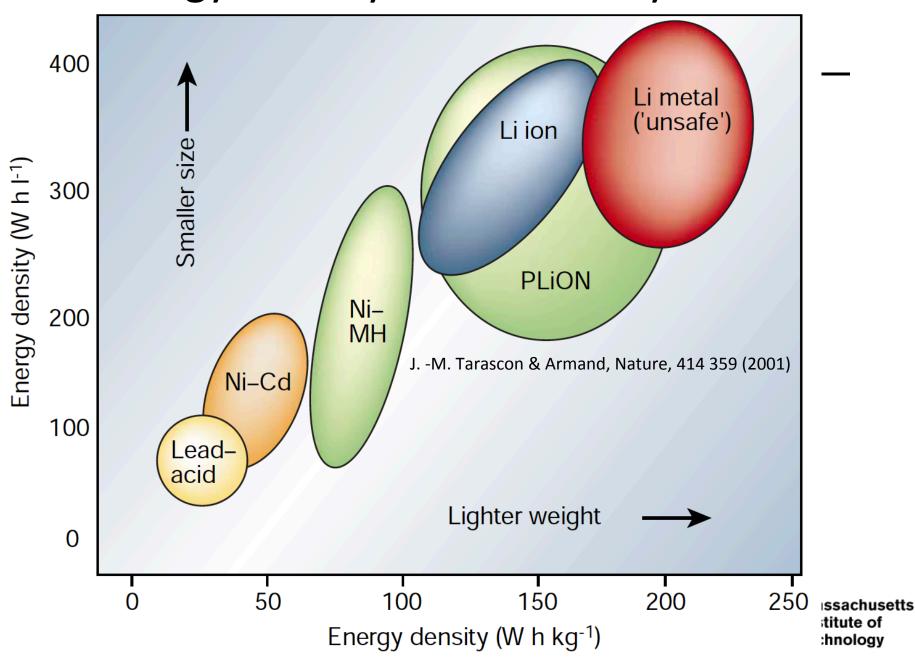
Primary cells

- Not capable of being recharged electrically
- Good shelf life,
- high energy density at low to moderate discharge rate,
- No or little maintenance
- Ease of use

Reserve batteries

- Primary type
- long term storage

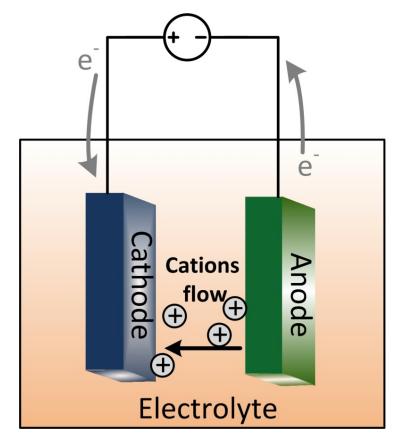
Secondary or rechargeable cells


- Can be recharged electrically
- High power density
- High discharge rate
- Flat discharge curve
- Good low temperature performance

Fuel cells

- Active material are fed into the cell from an external source
- Capable of producing electrical energy as long as the active materials are fed to the electrodes

Energy Density for Secondary Batteries

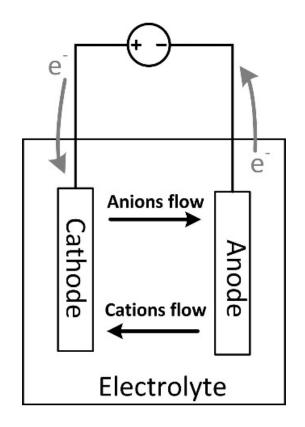


Batteries: Concept and Principle

Battery is a storage device which converts chemical energy

into electrical energy

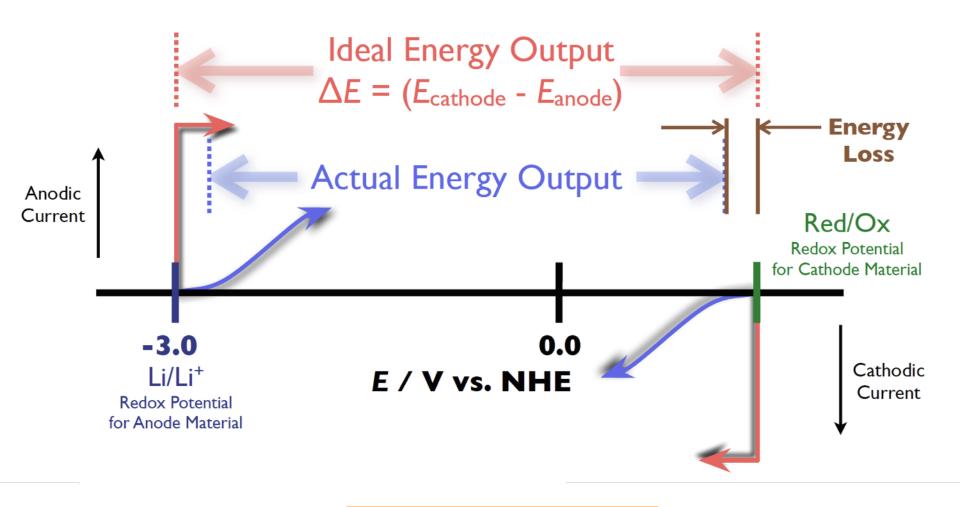
- Main components:
 - Anode or negative electrode
 - Cathode or positive electrode
 - Electrolyte flow of ions



Operation of a cell

Discharge:

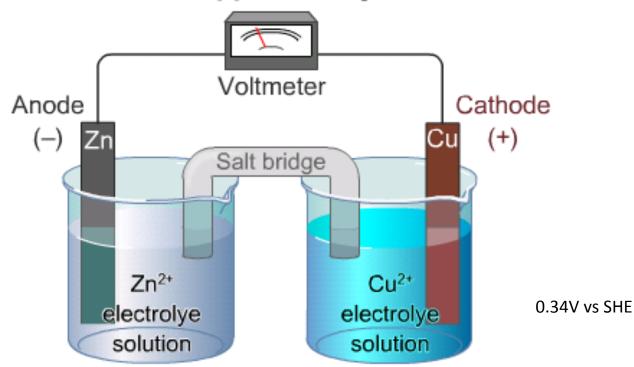
- When cell is connected to an external load, electrons flow from the anode, which is oxidized, through the external load to the cathode, where the electrons are accepted and the cathode material is reduced.
- The electric circuit is completed in the electrolyte by the flow of anions (negative ions) and cations (positive ions) to the anode and cathode, respectively.


Theoretical Voltage

■ The standard potential of the cell is determined by the type pf the **active materials** (cathode and anode) in the cell.

	Reduction Half-Reaction		E ° (V)	
Stronger	$F_2(g) + 2e^-$	\longrightarrow 2 F (ag)	2.87	Weaker
oxidizing	$H_2O_2(aq) + 2 H^+(aq) + 2 e^-$	()	1.78	reducing
gent	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^-$	2 ()	1.51	agent
		$\longrightarrow 2 \text{ Cl}^{-}(aq)$	1.36	
4	$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e$		1.33	
	$O_2(g) + 4 H^+(aq) + 4 e^-$		1.23	
		\longrightarrow 2 Br ⁻ (aq)	1.09	
	$Ag^+(aq) + e^-$	$\longrightarrow Ag(s)$	0.80	
		\longrightarrow Fe ²⁺ (aq)	0.77	
	$O_2(g) + 2 H^+(aq) + 2 e^-$		0.70	
	$I_2(s) + 2e^-$	$\longrightarrow 2 \text{ I}^{-}(aq)$	0.54	
	$O_2(g) + 2 H_2O(l) + 4 e^-$	\longrightarrow 4 OH ⁻ (aq)	0.40	
	$Cu^{2+}(aq) + 2e^{-}$	$\longrightarrow Cu(s)$	0.34	
	$Sn^{4+}(aq) + 2e^{-}$	\longrightarrow Sn ²⁺ (aq)	0.15	
	2 H ⁺ (aq) + 2 e ⁻	\longrightarrow H ₂ (g)	0	
	$Pb^{2+}(aq) + 2e^{-}$	\longrightarrow Pb(s)	-0.13	
	$Ni^{2+}(aq) + 2e^{-}$	\longrightarrow Ni(s)	-0.26	
	$Cd^{2+}(aq) + 2e^{-}$	$\longrightarrow Cd(s)$	-0.40	
	$Fe^{2+}(aq) + 2e^{-}$	\longrightarrow Fe(s)	-0.45	
	$Zn^{2+}(aq) + 2e^{-}$	\longrightarrow Zn(s)	-0.76	
	$2 H_2O(l) + 2 e^-$	\longrightarrow H ₂ (g) + 2 OH ⁻ (aq)	-0.83	
	$Al^{3+}(aq) + 3e^{-}$	\longrightarrow Al(s)	-1.66	
Weaker	$Mg^{2+}(aq) + 2e^{-}$	\longrightarrow Mg(s)	-2.37	Stronge
xidizing	$Na^+(aq) + e^-$	\longrightarrow Na(s)	-2.71	reducin
gent	$Li^+(aq) + e^-$	$\longrightarrow \text{Li}(s)$	-3.04	agent

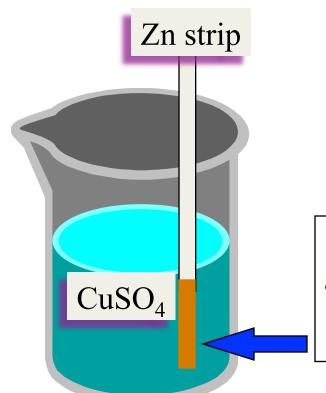
Energy Density for Secondary Batteries



Energy (Wh) = I x V x t Power (W) = I x V

First battery

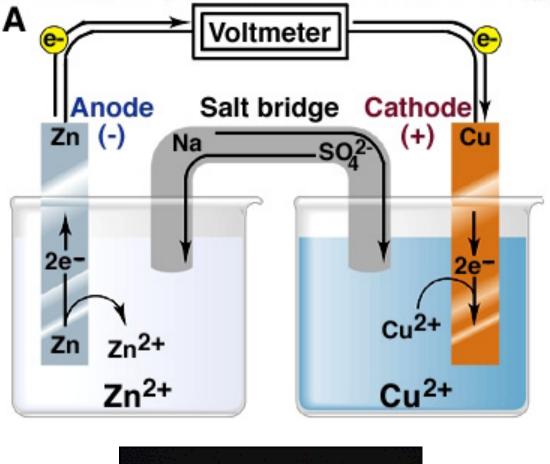
Zinc-copper battery cell



-0.76V vs SHE

Total voltage: 1.1 V

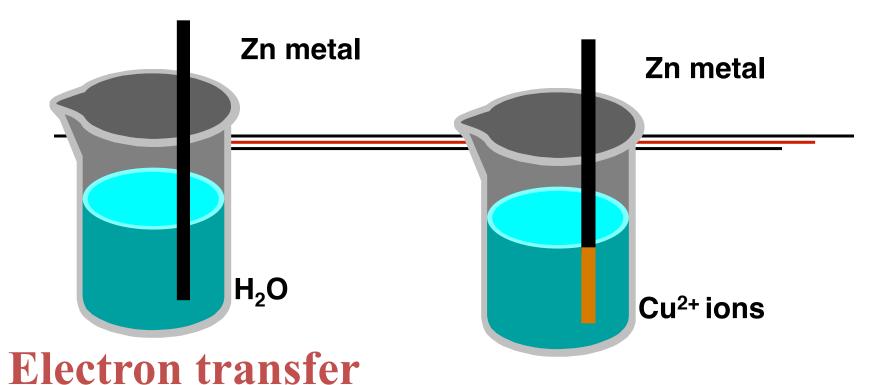
Copper Plating

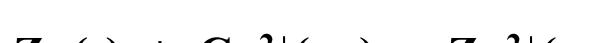


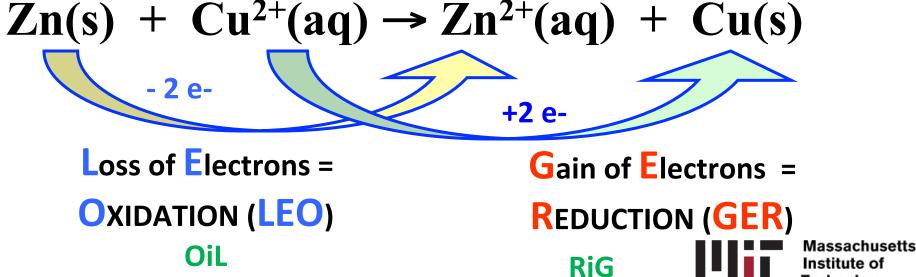
With time, Cu plates out onto Zn metal strip.

Electrons are transferred from Zn to Cu²⁺, but there is no useful electric current.

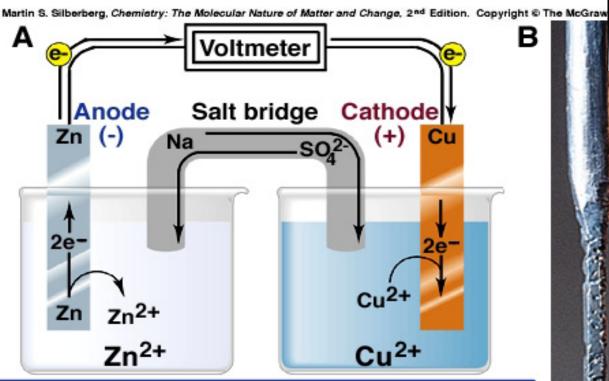
- Zn is oxidized and is the reducing agent Zn(s) → Zn²⁺(aq) + 2e-
- Cu^{2+} is reduced and is the oxidizing agent $Cu^{2+}(aq) + 2e \rightarrow Cu(s)$ $Cu^{2+}(aq) + 2e \rightarrow Cu(s)$


В





Zinc-Copper Reaction ® McGraw-Hill Higher Education/Stephen Frisch, photographer Voltaic Cell

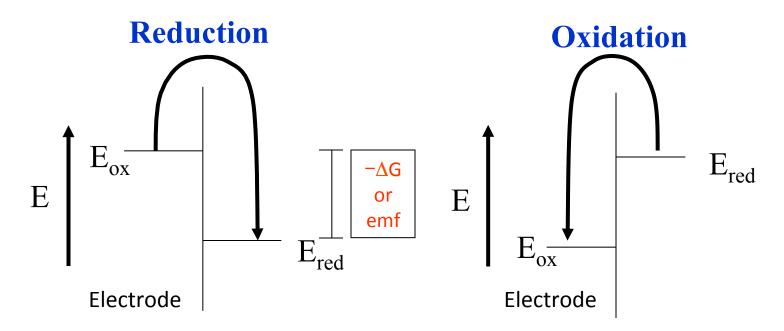


Technology

CHEMICAL CHANGE → **ELECTRIC CURRENT**

Oxidation half-reaction Zn(s) → Zn²⁺(aq) + 2e⁻

Reduction half-reaction 2e⁻ + Cu²⁺(aq) → Cu(s)


Overall (cell) reaction Zn(s) + Cu²⁺(aq) → Zn²⁺(aq) + Cu(s)

Zinc-Copper Reaction

Noltaic Cell us Technology

Why Electrons Transfer

- •Net flow of electrons from electrode to solute
- •Electromotive force (emf) is the difference between the initial energy and reduced energy
- more cathodic
- more reducing

- •Net flow of electrons from solute to electrode
- •Positive ΔG , negative emf
- more anodic
- more oxidizing

Cell diagrams

Rather than drawing an entire cell, a type of shorthand can be used.

For our copper - zinc cell, it is:

The anode is always on the left.

- = boundaries between phases
- || = salt bridge

Anode Left, Cathode Right (Reduction, Receiving)

Electrons flow left to right (in order of species)

Zn/Cu Electrochemical Cell

Salt bridge Cathode

What is E^o for the Zn/Cu cell (Daniel's cell) ??

$$\mathbf{E}^{o}_{cell} = \mathbf{E}^{o}_{cathode} - \mathbf{E}^{o}_{anode}$$

Product gets electron

Reactant gives electron

Products - reactants

Cathode:
$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$
 $E^{\circ} = +0.34 \text{ V}$

Anode:

$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e - E^{0} = -0.76 V$$

$$E^{\circ} = -0.76 \text{ V}$$

Net:


$$Cu^{2+}(aq) + Zn(s) \rightarrow Zn^{2+}(aq) + Cu(s)$$

$$E_{cell} = E_{cathode} - E_{anode} = 0.34 - (-0.76) = +1.10 V$$

E° and ΔG°

 E° is related to ΔG° , the free energy change for the reaction for standard state (most stable form at 25°C and 100kPa).

$\Delta G^{\circ} = - n F E^{\circ}$

F = Faraday constant = 9.6485 x 10⁴ C/mol

□ = number of moles of e⁻'s transferred.

Zn / Zn²⁺ // Cu²⁺ / Cu

n for Zn/Cu cell? n = 2

Michael Faraday 1791-1867

Discoverer of

- electrolysis
- magnetic properties of matter
- electromagnetic induction (electric motor)

$$Cu^{2+}(aq) + Zn(s) \rightarrow Zn^{2+}(aq) + Cu(s)$$

E° and ΔG°

$$\Delta G^0 = -n F E^0$$

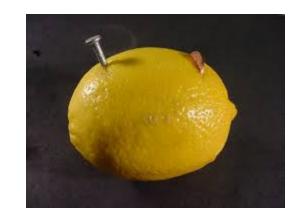
- For a product-favored reaction
 - Galvanic cell: Chemistry → electric current
 Reactants → Products

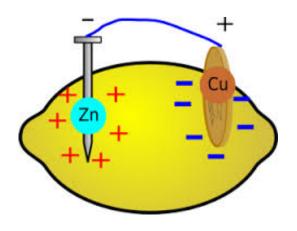
 ΔG° < 0 and so E° > 0 (E° is positive)

- For a reactant-favored reaction
 - Electrolytic cell: Electric current → chemistry

Reactants ← **Products**

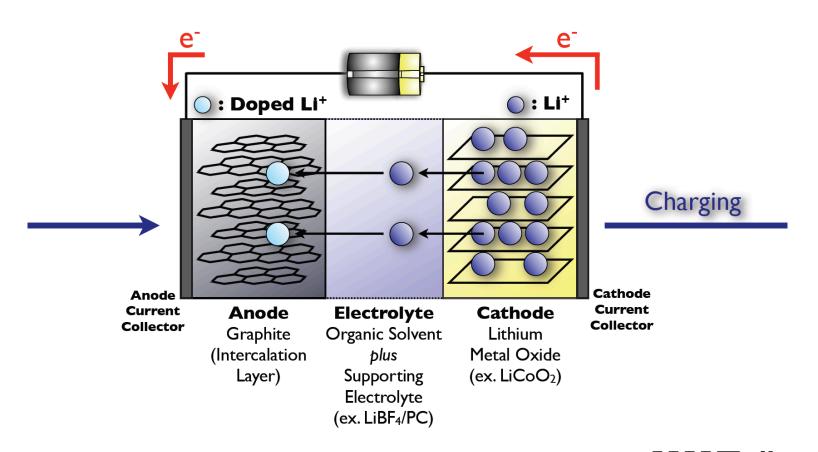
 $\Delta G^{\circ} > 0$ and so $E^{\circ} < 0$ (E° is negative)

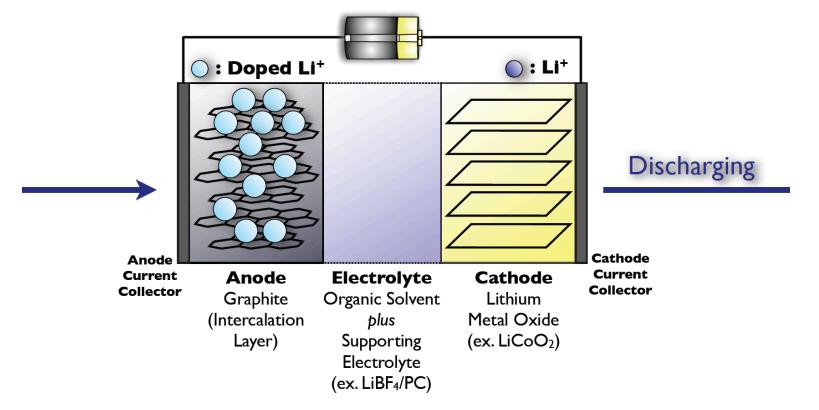

Lemon Battery


- Making a battery with a lemon, penny and galvanized nail (Zn-coated) as the electrodes
 - Negative electrode?
 - Positive electrode?
 - Why do we need the lemon?
 - What if we use 2 pennies?

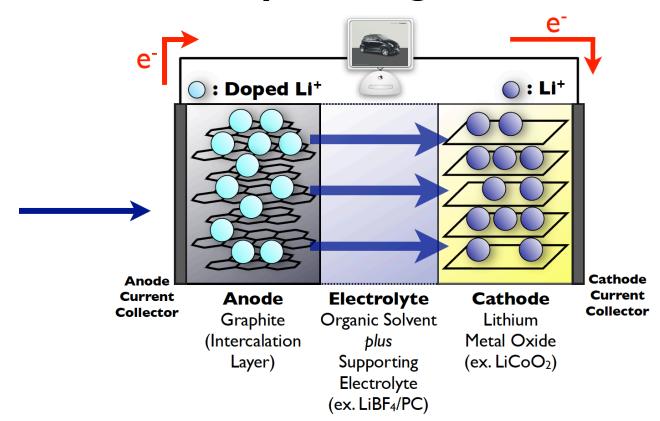
$$Zn^{2+}$$
 (aq)+ $2e^{-}$ \longrightarrow Zn (S) -0.76(v)

$$Cu^{2+}$$
 (aq)+ $2e^{-}$ \longrightarrow Cu (S) 0.34 (v)


What is the standard potential of the lemon battery?


An Intercalation-based Lithium Battery Cell

Reaction Mechanism for LIBs


Fully Charged State

Reaction Mechanism for LIBs

Fully Discharged State

What are the Batteries for Higher Energy Density LIBs?

Catagory	Material	Capacity (Ah/kg)	
Category	Materiai	Theoretical	Actual
Cathode Material	LiCoO ₂	274	140
	LiMn ₂ O ₄	148	120
	LiV ₂ O ₅	142	140
	LiNiO ₂	275	200
	LiFePO ₄	170	150
Anode Material	Carbon (LiC ₆)	372	-
	Lithium	386 I	-

Capacity imbalance between cathode and anode will increase further so that higher capacity cathode materials to match anode capacity will be required. Furthermore, for transportation, inexpensive and abundant materials will also be required.

Technology