# M1D5: Analyze Gamma-H2AX images and CometChip electrophoresis

09/26/19

# Overview of CometChip Assay: Chemically treating cells and visualization

Treat captured cells in comet chip with MMS then As



### Lysis, electrophoresis & staining CometChips

- Alkaline lysis solution (pH 10)
  - 2.5 M NaCl, 100 mM Na<sub>2</sub>EDTA, 10 mM Tris
  - Triton X-100
- Unwinding/ electrophoresis buffer (pH 13.5)
  - 0.3M NaOH, 1mM Na<sub>2</sub>EDTA
- Neutralize (pH 7.5)
  - 0.4M Tris
- Florescent stain for DNA (dye)
  - SYBR Gold in PBS



# Output of Alkaline CometChip Assay



# No Damage

- Supercoiled nucleoid
- Little or no migration



#### **High Damage**

- SSBs, abasic sites, alkali labile sites
- forms a "Comet tail"

Genomic damage from direct strand breaks and <u>REPAIR INTERMEDIATES</u>

#### HW M1D6:

- (1) Revise methods (*with partner*) M1D1-M1D5(2) Mini Presentation **Outline** (*individual*)
- Follow time and content guidelines
- Introduce yourself and your research
- Clearly identify main question(s) and state your hypothesis
- Be quantitative when stating your findings (<u>NOT</u> "This was more/less than...")
- For this HW assignment:
  - outline should be in bullet format, not script
  - put placeholder statements for key findings (example, H2AX foci increased by XX%)

# (3) Prepare for in-class paper discussion

- Consider discussion guidelines on wiki while reading the paper
- Contributing to the discussion is impt. for your participation score

REPORT

Cell Cycle 12:6, 907–915; March 15, 2013; © 2013 Landes Bioscience

#### Single-cell microarray enables high-throughput evaluation of DNA double-strand breaks and DNA repair inhibitors

David M. Weingeist,<sup>1,†</sup> Jing Ge,<sup>1,†</sup> David K. Wood,<sup>2</sup> James T. Mutamba,<sup>1</sup> Qiuying Huang,<sup>3</sup> Elizabeth A. Rowland,<sup>1</sup> Michael B. Yaffe,<sup>1,3,4,5</sup> Scott Floyd<sup>4,6</sup> and Bevin P. Engelward<sup>1,\*</sup>