

L6 – Engineering Transcriptional Responses with a Chemical Probe

November 19, 2019

D. melanogaster

C. elegans

Homo sapiens

Oryza sativa

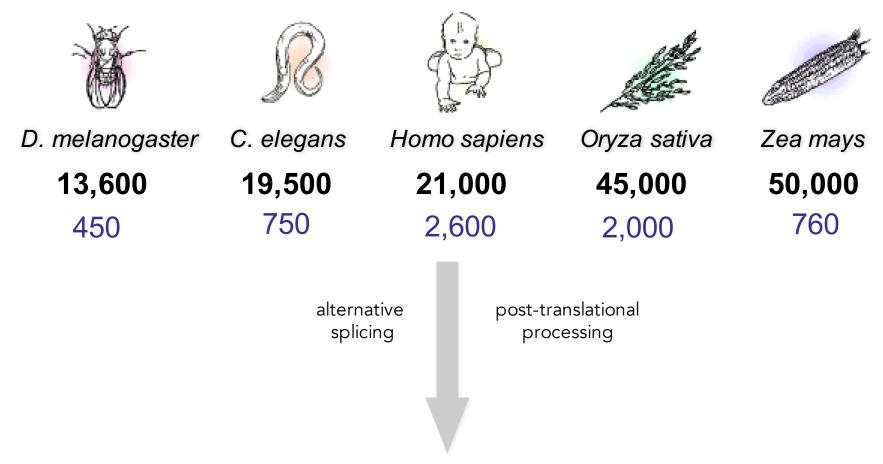
Zea mays

13,600

19,500

21,000

45,000


50,000

alternative splicing

post-translational processing

>100,000 proteins of unknown structure or function How do these parts give rise to organismal complexity?

>100,000 proteins of unknown structure or function How do these parts give rise to organismal complexity?

1 Activator proteins bind to pieces of DNA called enhancers. Their binding causes the DNA to bend, bringing them near a gene promoter, even though they may be thousands of base pairs away.

Enhancers

Activator proteins

Other transcription factor proteins

Gene

Promoter

3 This protein complex makes it easier for RNA polymerase to attach to the promoter and start transcribing a gene.

RNA polymerase

Other transcription factor proteins join the activator proteins, forming

a protein complex which binds to the gene promoter.

note

This diagram simplifies the DNA greatly—promoters, enhancers, and insulators can be dozens or even hundreds of base pairs long.

4 An insulator can stop the enhancers from binding to the promoter, if a protein called CTCF (named for the sequence CCCTC, which occurs in all insulators) binds to it.

Methyl groups >

Insulator

5 Methylation, the addition of a methyl group to the C nucleotides, prevents CTCF from attaching to the insulator, turning it off, allowing the enhancers to bind to the promoter.

CTCF (CCCTC-binding factor)

Transcriptional protein complex 1

Individual factors

Transcriptional protein complex 2

Transcriptional protein complex 3

Transcriptional protein complex 1

Transcriptional program 1

Individual factors

Transcriptional program 4

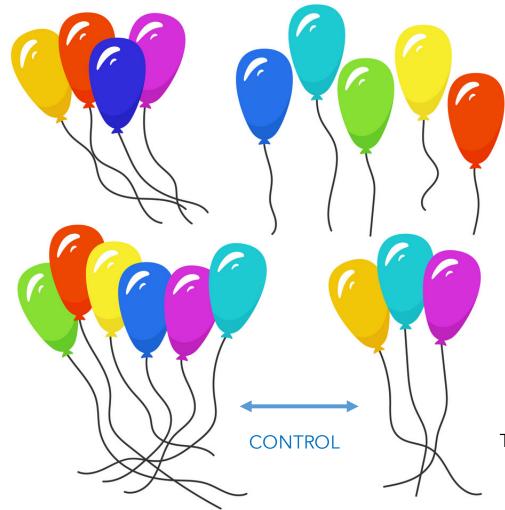
Transcriptional protein complex 2

Transcriptional program 2

Transcriptional protein complex 3

Transcriptional program 3

Transcriptional protein complex 1


Transcriptional program 1

Cell state 1

Transcriptional protein complex 2

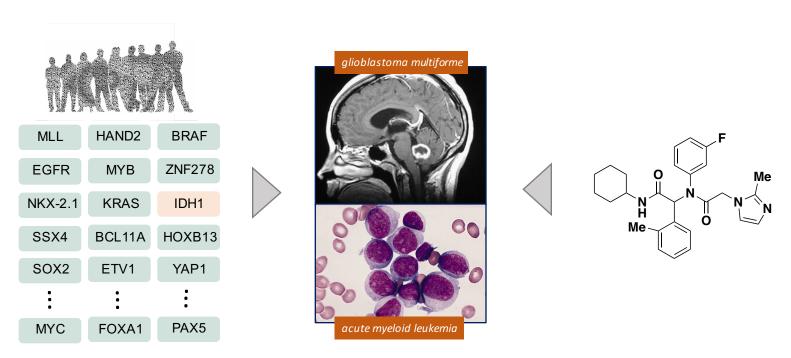
Transcriptional program 2

Cell state 2

Individual factors

Transcriptional program 4

Cell state 4


Transcriptional protein complex 3

Transcriptional program 3

Cell state 3

Therapeutically-driven probe discovery

target cause of disease revealed by human genetics

patient samples reveal list of disease genes test impact of disease genes in a physiologic settings discover molecules that reverse impact of disease genes

Transcription factors implicated in a broad spectrum of disease

AVGR8	central corneal thickness	MEIS1	restless leg syndrome
BCL11A	β-hemoglobin disorders	MLXIPL	coronary artery disease
CAMTA1	episodic memory deficit	NFATC2	T1D
ELF1	systemic lupus erythematosus	NOTCH2	T2D
ETS1	systemic lupus erythematosus	PBX4	coronary artery disease
GATA3	periodontitis	PPARG	T2D
GTF2H1	amyloidosis	RELA	rheumatoid arthritis
HHEX-IDE	T2D	RFX4	Parkinson's disease
HIF2A	RCC	SP7	BMD
HNF1B	T2D	STAT3	various AI disorders and cancers
HPB1	osteoarthritis	STAT4	systemic lupus erythematosus
IRF5	various AI disorders	TCF4	schizophrenia, corneal dystrophy
IRF8	MS	TCF7L2	T2D
LBXCOR1	restless leg syndrome	THAP1	early-onset torsion dystonia
MAF	early-onset obesity	ZNF469	central corneal thickness
MECP2	autism	ZNF804A	schizophrenia

Transcription factors

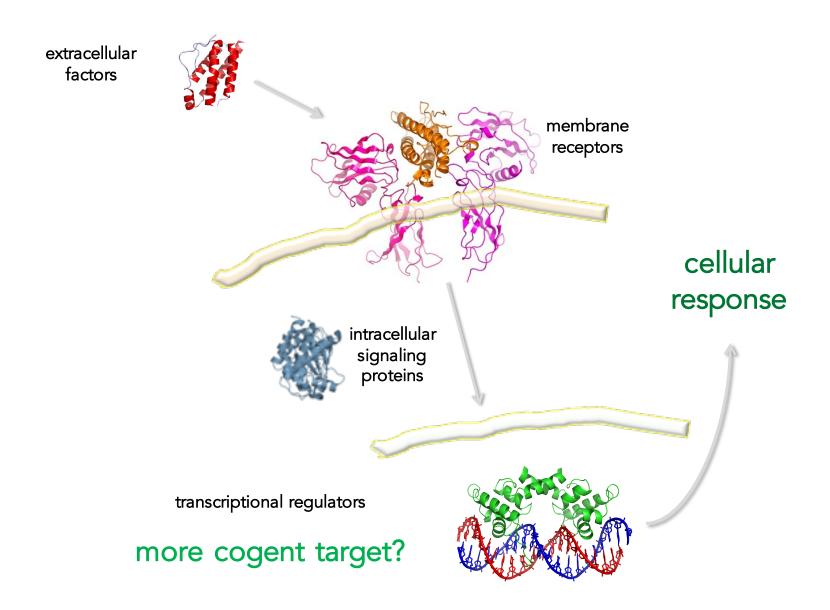
misregulation in cancer

amplified TF cancer genes

JUN	sarcoma
LMO1	T-ALL, neuroblastoma
MITF	melanoma
MYC	various cancers
MYCL1	small cell lung
MYCN	neuroblastoma
NKX2-1	folicular lymphoma
REL	Hodgkin lymphoma
SOX2	NSCLC, esophageal SCC

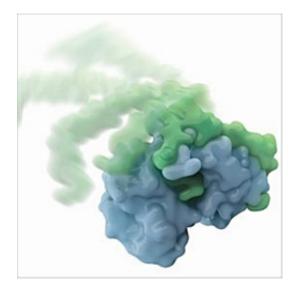
germline mutated TF cancer genes

HNF1	HCC, hepatic adenoma
LMO1	neuroblastoma
PHOX2B	neuroblastoma
RB1	various cancers
SMAD4	gastrointestinal polyps
SMARCB1	malignant rhabdoid
SUFU	medulloblastoma
TP53	various cancers
WT1	Wilms tumor


TF cancer genes with frameshift mutations

ARID1A	clear cell ovarian carcinoma, RCC
ASXL1	MDS, CMML
ATRX	pancreatic neuroendocrine
CEBPA	AML, MDS
CREBBP	ALL, AML, DLBCL, B-NHL
DAXX	pancreatic neuroendocrine
EP300	various cancers
GATA1	megakaryoblastic leukemia
GATA3	breast
HNF1	HCC, hepatic adenoma
HRPT2	parathyroid adenoma
NOTCH2	marginal zone lymphoma, DLBCL
PBRM1	breast, clear cell renal carcinoma
PHOX2B	neuroblastoma
PRDM1	DLBCL
RB1	various cancers
SMAD4	gastrointestinal polyps
SMARCA4	NSCLC
SMARCB1	malignant rhabdoid
SUFU	medulloblastoma
TP53	various cancers
WT1	Wilms tumor

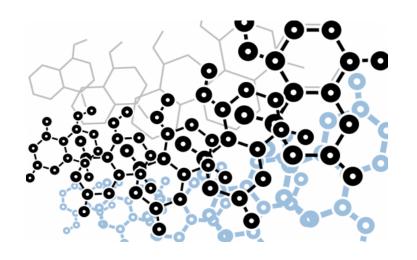
somatically mutated TF cancer genes

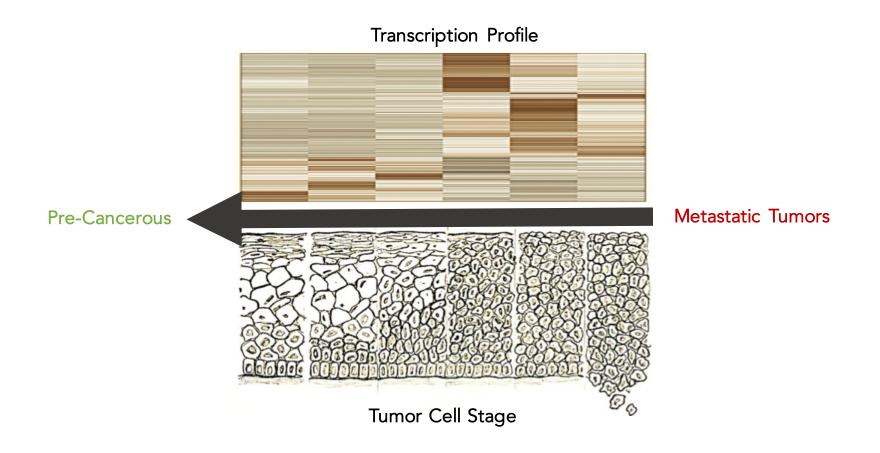

AFF4	ALL	IRF4	MM		
ARNT	AML	JAZF1	endometrial stromal tumors	POU2AF1	NHL
ATF1	melanoma, AFH	JUN	sarcoma	POU5F1	sarcoma
BTG1	BCLL	KLF6	prostate, glioma	PPARG	follicular thyroid
CBFB	AML	LAF4	ALL	PRDM1	DLBCL
CDX2	AML	LMO1	T-ALL, neuroblastoma	PRDM16	MDS, AML
CEBPA	AML, MDS	LMO2	T-ALL	RARA	APL
CIC	soft tissue sarcoma	I PP	lipoma, leukemia	RB1	various cancers
CIITA	PMBL, Hodgkin lymphoma	LYL1	T-ALL	REL	Hodgkin lymphoma
CREB1	clear cell sarcoma	MAFB	MM	RUNX1	AML, pre B-ALL
CREBBP	ALL, AML, DLBCL, B-NHL	MAML2	salivary gland	RUNXBP2	AML
CRTC3	salivary gland mucoepidermoid	MDS1	MDS, AML	SMAD4	colorectal, pancreatic
DUX4	soft tissue sarcoma	MDS2	MDS	SMARCA4	NSCLC
EBF1	lipoma	MECT1	salivary gland	SMARCB1	malignant rhabdoid
ELF4	AML	MHC2TA	head-neck squamous cell, renal	SOX2	NSCLC, esophageal SCC
ELK4	prostate	MITE	melanoma	SS18	synovial sarcoma
ELKS	papillary thyroid	MKL1	AML	SS18L1	synovial sarcoma
EP300	various cancers	MLF1	AML	SSX1	synovial sarcoma
ERG	AML, Ewing sarcoma, prostate	MLLT1	ALL	SSX2	synovial sarcoma
ETV1	Ewing sarcoma, prostate	MLLT10	ALL, colorectal	SSX4	synovial sarcoma
ETV4	Ewing sarcoma, prostate	MLLT2	•	SUFU	medullablasto ma
ETV5	prostate		ALL, breast cancers	SUZ2	endometrial stromal tumors
ETV6	various cancers	MLLT3 MLLT4	AML AML	TAF15	ALL, EMC
EVI1	AML. CML		ALL	TAL1	lymphoblastic leukemia
EWSR1	Ewing sarcoma, ALL	MLLT6		TAL2	Ť-ALL
FEV	Ewing sarcoma	MLLT7	ALL	TCEA1	salivary adenoma
FLI1	Ewing sarcoma	MYB MYC	adenoid cystic sarcoma	TCF12	EMC
FOXL2	ovarian		various cancers	TCF3	pre B-ALL
FOXO1A	alveolar rhabdomyosarcomas	MYCL1	small cell lung	TFE3	renal, alveolar soft sarcoma
FOXO3A	AL	MYCN	neuroblastoma	TFEB	renal (child epithelioid)
FOXP1	ALL	NCOA1	alveolar rhabdomyosarcoma	TFPT	pre B-ALL
GATA1	megakaryo blastic leukemia	NCOA2	AML	THRAP3	aneurysmal bone cysts
GATA2	AML	NCOA4	papillary thyroid	TIF1	APL
GATA3	breast	NFIB	lipoma, ACC	TLX1	T-ALL
HLF	ALL	NFKB2	B-NHL	TLX3	T-ALI
HLXB9	AML	NKX2-1	NSCLC	TP53	various cancers
HMGA1	various cancers	NOTCH1	T-ALL	TRIM27	papillary thyroid
HMGA2	various cancers	NOTCH2	DLBCL, marginal zone lymphoma	TRIM33	papillary thyroid
HOXA11	CML	NR4F3	EMC	TSHR	toxic thyroid adenoma
HOXA11	AML	NRF2	NSCLC, HNSCC	WT1	Wilm tumor
HOXA9	AML	OLIG2	T-ALL	ZNF145	APL
HOXC11	AML	PAX3	alveolar rhabdomyosarcoma	ZNF198	MPD, NHL
	AML AML	PAX5	NHL	ZNF278	Ewing sarcoma
HOXC13 HOXD11	AML AML	PAX7	alveolar rhabdomyosarcoma	ZNF331	follicular thyroid adenoma
HOXD11 HOXD13	AML	PAX8	follicular thyroid	ZNF384	ALL
HOXDI3 HNF1	HCC	PBX1	pre B-ALL	ZNF521	ALL
HNF1 HRPT2	parathyroid adenoma	PHOX2B	neuroblastoma	ZNF9	aneurysmal bone cysts
IKZF1	ALL	PLAG1	salivary adenoma	ZNFN 1A1	ALL, DLBCL
INZFI	ALL	PMX1	AML1	ZIVITAT	VALL, DEDOL

• • •

A complex task?

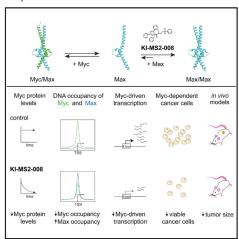
transcription factors are the prototype of an 'undruggable' target


disordered when isolated from binding partners


DNA-binding domains lack obvious pockets

transit to reach resident nuclear factors

Can we build general and systematic platforms for developing chemical probes for transcriptional regulators?


Can we tune dysregulated gene expression programs and impact cell state?

Article

Cell Chemical Biology

Stabilization of the Max Homodimer with a Small Molecule Attenuates Myc-Driven Transcription

Graphical Abstract

Highlights

- KI-MS2-008 is a Max-binding small molecule that attenuates Myc-driven transcription
- The compound stabilizes the Max homodimer
- Effects on DNA occupancy and the transcriptome resemble loss of Myc
- Treatment with KI-MS2-008 exhibits efficacy in cellular and murine cancer models

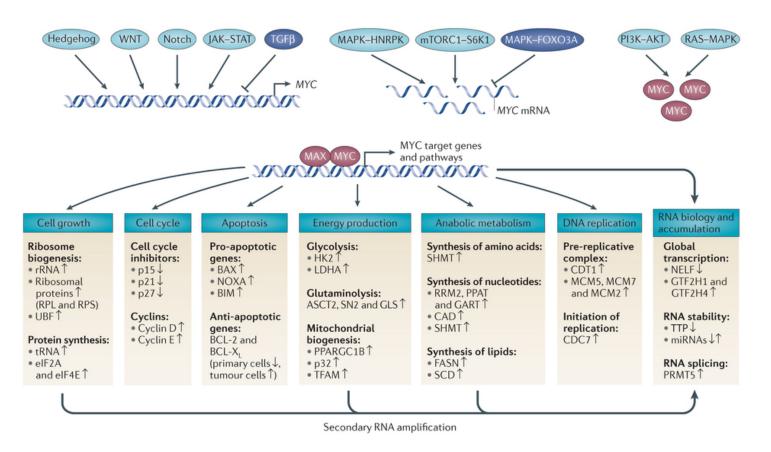
Authors

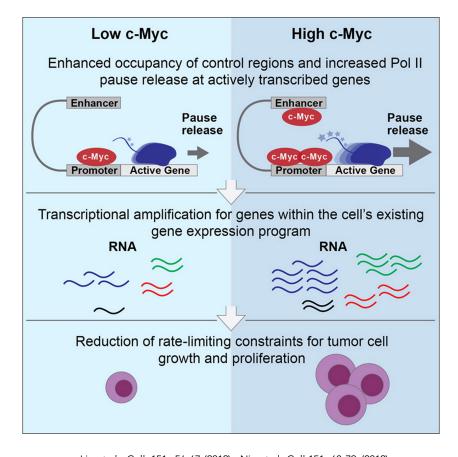
Nicholas B. Struntz, Andrew Chen, Anja Deutzmann, ..., Charles Y. Lin, Dean W. Felsher, Angela N. Koehler

Correspondence

koehler@mit.edu

In Brief


Myc/Max-mediated transcription is deregulated in most of human cancers. Struntz et al. discovered a small molecule that stabilizes the Max homodimer and attenuates Myc-driven transcription with efficacy in cellular and murine cancer models. This discovery reinforces an alternative Myc-targeting strategy and could inform development of compounds to treat Myc-dependent cancers.


MYC family of transcription factors

master regulators of broad cellular processes

c-Myc

accumulates in promoter regions and amplifies transcription when overexpressed in cancer

Lin et al., Cell, 151, 56-67 (2012); Nie et al, Cell 151, 68-79 (2012)

MYC expression in haploinsufficient mice

amelioration of age-associated phenotypes

Hofmann et al., Cell, 160, 477-488 (2015)

Article

Reduced Expression of MYC Increases Longevity and Enhances Healthspan

Jeffrey W. Hofmann, ^{1,7} Xiaoai Zhao, ^{1,7} Marco De Cecco, ¹ Abigail L. Peterson, ¹ Luca Pagliaroli, ¹ Jayameenakshi Manivannan, ¹ Gene B. Hubbard, ² Yuji Ikeno, ² Yongqing Zhang, ³ Bin Feng, ⁴ Kiaxi Li, ⁵ Thomas Serre, ⁵ Wenbo Qi, ² Holly Van Remmen, ² Richard A. Miller, ⁶ Kevin G. Bath, ⁵ Rafael de Cabo, ³ Haiyan Xu, ⁴ Nicola Neretti, ⁷ and John M. Sedivy^{1, 4}

¹Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA

²Department of Cellular and Structural Biology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA

³Translational Gerontology Branch, National Institute on Aging, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA

⁴Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence,

⁴Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence,

⁴Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence,

⁵Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence,

⁶Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence,

⁷Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence,

⁸Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence,

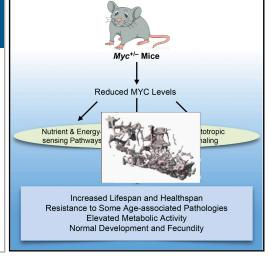
⁸Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence,

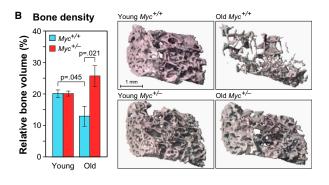
⁸Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence,

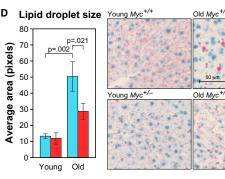
⁸Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence,

⁸Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Providence,

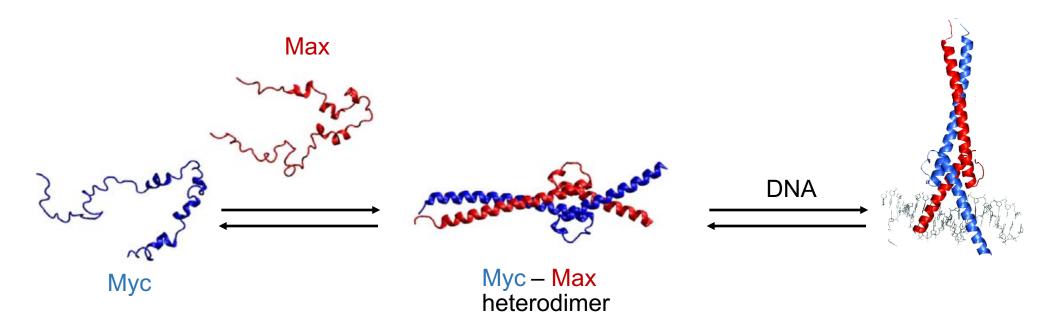
⁸Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Providence,

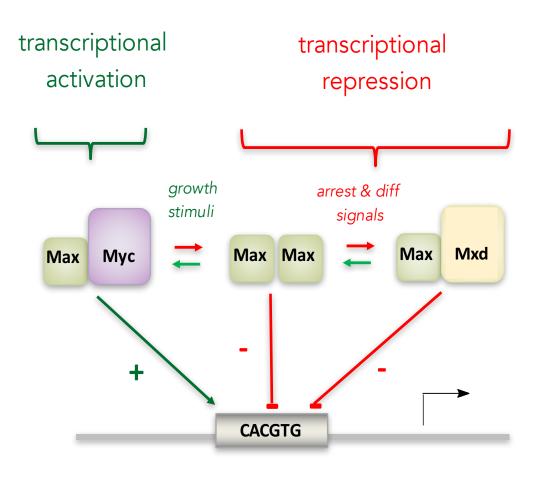

⁸Hallett Center for Diabetes and


⁸

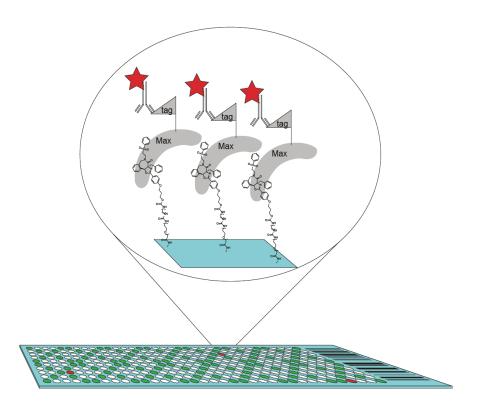

⁵Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA ⁶Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA

*Correspondence: john_sedivy@brown.edu

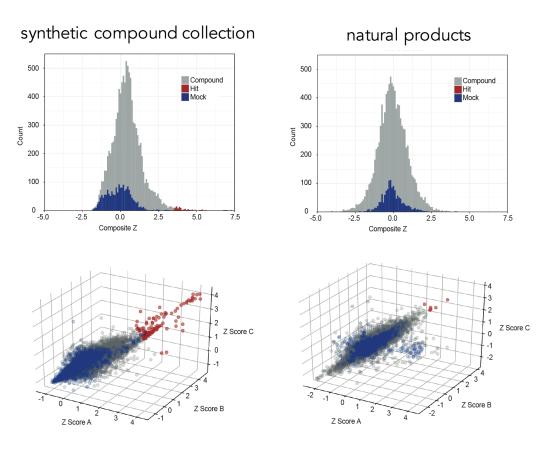

http://dx.doi.org/10.1016/j.cell.2014.12.016



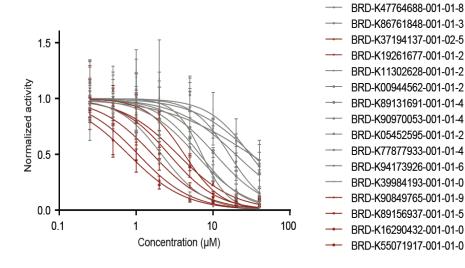
Myc and Max form a heterodimer to bind DNA and drive transcription



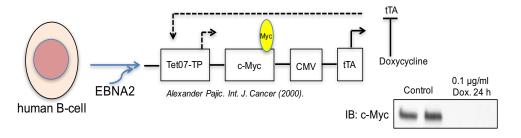
Current Myc modulators lack potency and selectivity

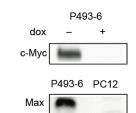

Max as a target: heterodimer/homodimer dynamics

SMM screens: purified Max transcription factor

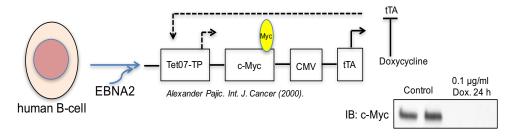

>21k compounds screened

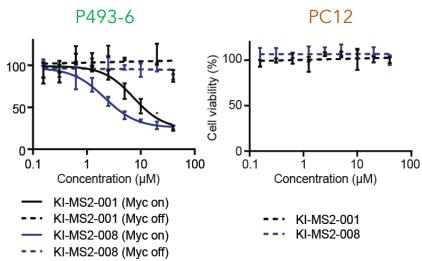
117 assay positives


Reporter gene assays: putative Max binders modulate Myc-driven transcription


Cell viability assays: Are Myc or Max required?

P493-6 Dox-repressible cells for MYC 'on/off' studies



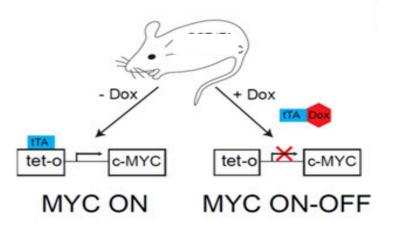

	KI-MS2-001	KI-MS2-008
Myc reporter	1.98 µM	1.28 µM
P493-6 Myc on	7.36 µM	2.15 μM
P493-6 Myc off	>50 µM	>50 µM

Cell viability assays: Are Myc or Max required?

P493-6 Dox-repressible cells for MYC 'on/off' studies

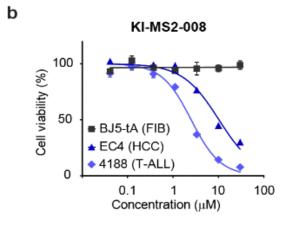
Max-deficient PC12 pheochromocytoma cells

Max	b	н	юор	H2	LZ			151aa
PC12 Max	b	н1	loop			11	101aa	


93-6 +
PC'

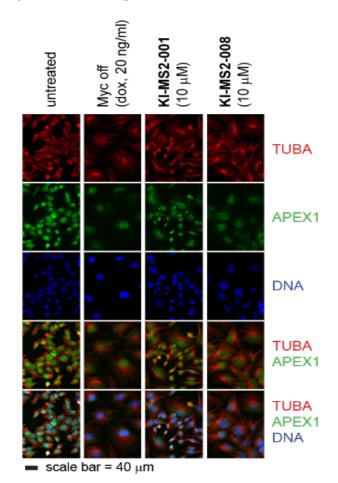
Conditional cellular models of MYC expression

Myc 'on/off' mouse models:

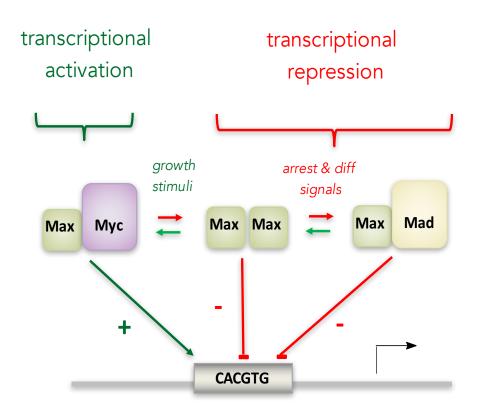

lymphoma HCC RCC

osteosarcoma

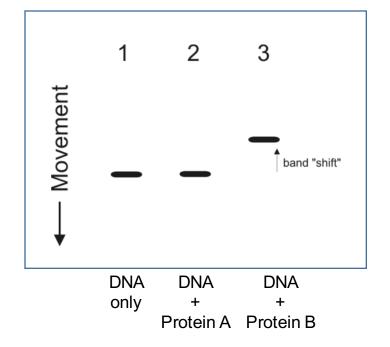
4188 (T-ALL)


(%) 100
(%) 100
(%) 100
(%) KI-MS2-001
(κI-MS2-008
1 10 100
Concentration (μΜ)

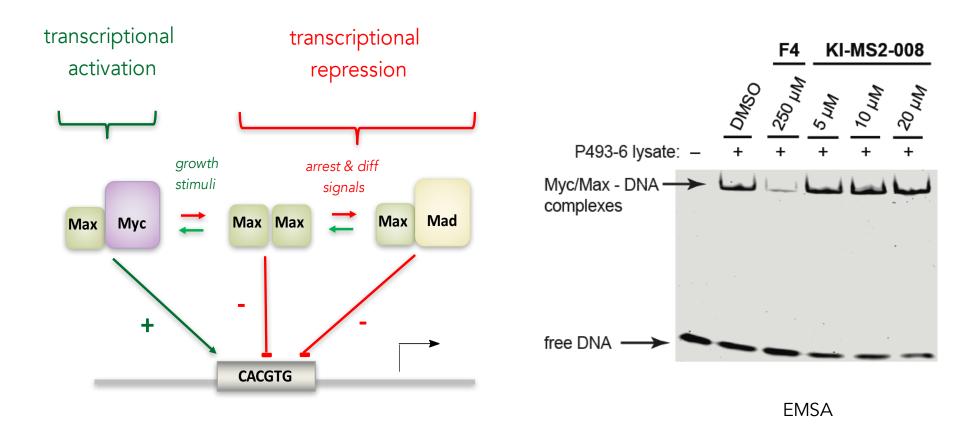
Anja Deutzmann, Felsher Lab Stanford

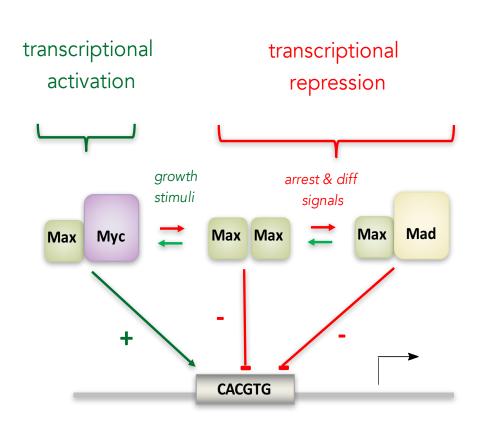

Imaging of biomarkers: conditional vs. chemical modulation

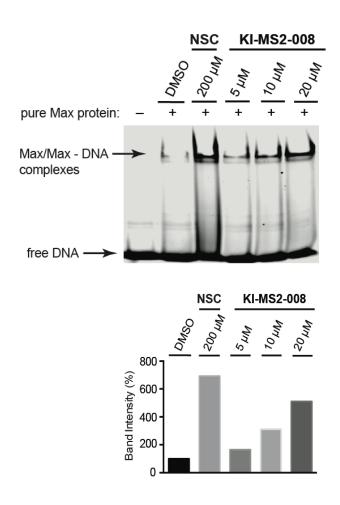
modulating Myc in an engineered osteosarcoma model



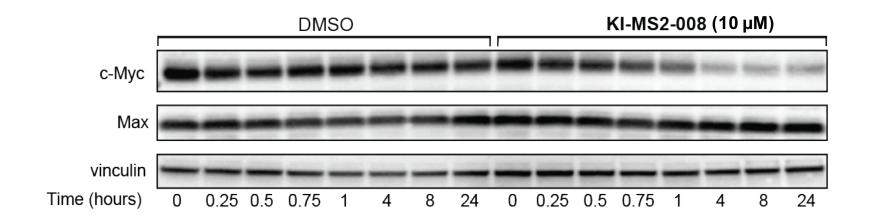
Anja Deutzmann, Felsher Lab Stanford

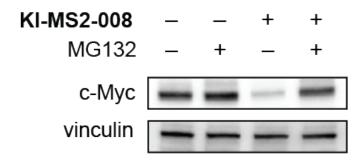

Does the probe antagonize the Myc/Max heterodimer?


Electrophoretic Mobility Shift Assay (EMSA) aka Gel Shift Assay

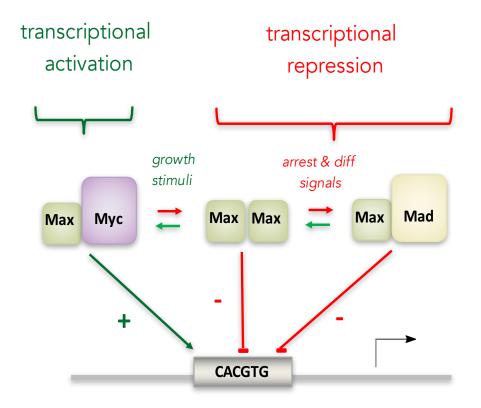


Does the probe antagonize the Myc/Max heterodimer?

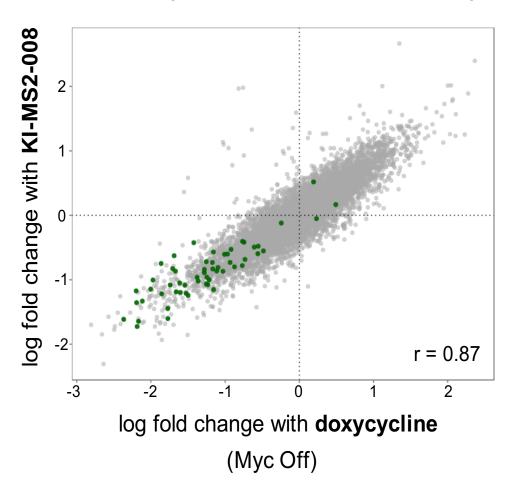



Does the probe stabilize the Max/Max homodimer?

Western blots: KI-MS2-008 alters Myc protein levels

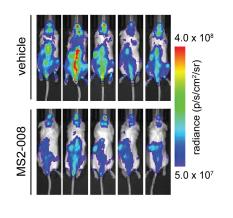


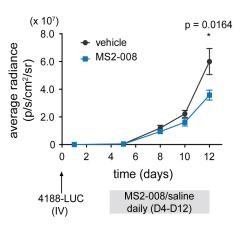
rescue experiment with 10 µM proteasome inhibitor MG132

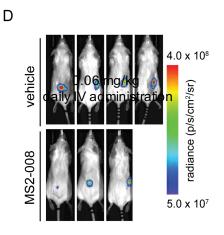

KI-MS2-008

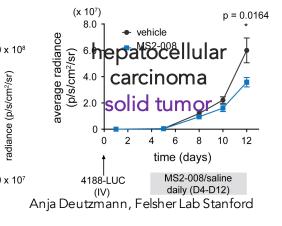
mixed mechanism inhibitor?

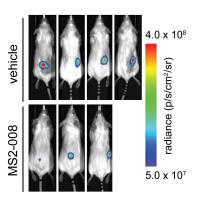
Gene expression profiling: KI-MS2-008 mimics MYC inactivation

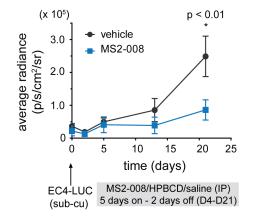

Gene Set Enrichment Analysis reveals an enrichment of Myc target genes

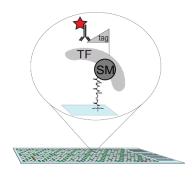


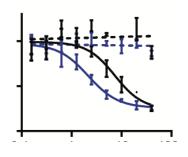

Hallmark V2 MYCdependent genes in green


In vivo studies: KI-MS2-008 modulates tumor volume in Myc-dependent mouse models of cancer


T-cell acute lymphoblastic leukemia blood cancer

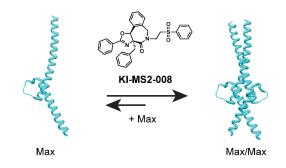




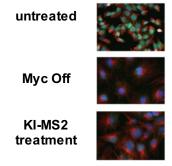


0.24 mg/kg subcutaneous administration 5d on/2d off cycles

Summary



 Identified KI-MS2-001 as a putative Max binder that modulates Myc transcriptional activity.

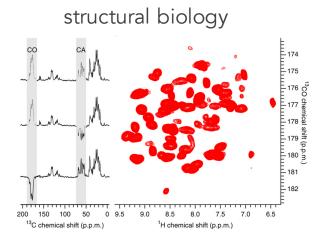


• KI-MS2-001 and KI-MS2-008 inhibited viable cell levels of P493-6 in a Myc-dependent manner.

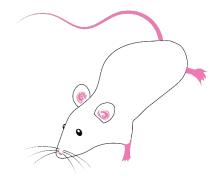
Summary

KI-MS2-008 stabilizes Max homodimers.

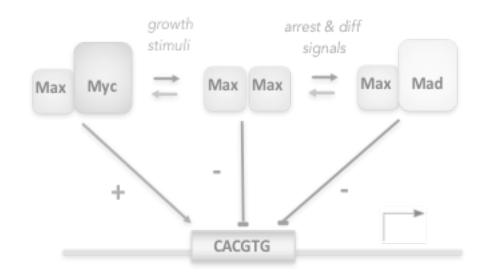
• KI-MS2-008 decreased Myc protein levels and mimicked Myc inactivation in cell morphology and the transcriptome.



• KI-MS2-008 treatment suppressed the growth of T-ALL and HCC in vivo.


Current directions

optimize potency and solubility, PK/PD-guided medicinal chemistry



additional tumor models same tumor models + new readouts

stabilizing repressive states vs. inhibiting activating states?

stabilizing vs. inhibiting PPIs?

Our path to evaluate ligands - lectures

11/7/19 Lecture screens	Intro to chemical biology: small molecules, probes, and
11/12/19	No lecture, Monday schedule
11/14/19 Lecture 2	
11/19/19 Lecture	
with a small molecu	Engineering transcriptional responses
11/21/19 Lecture 4	Quantitative evaluation of protein-ligand interactions
11/26/19	Student Pitches
12/3/19 Lecture 5	The story of FKBP12 – our protein target