M1D4: Assess purity and concentration of purified

protein

- 1. Comm Lab
- 2. Quiz
- 3. Prelab discussion
- 4. Visualize protein purity with SDS-PAGE
- 5. Measure protein concentration with BCA assay

Overview of Mod 1 experiments

Research goal: Use functional assays to characterize ligands identified as binders to TDP43 from SMM technology

Protein purification review

• Why this step?

- What's on the resin? (Ideally)
- What's in the expelled liquid? (Ideally)

Pellet Lysate Flowthrough Wash Elution Slurry | Description | Descripti

How will you assess purity and concentration?

- Check purity using SDS-PAGE
 - Visual detection of all proteins in sample
 - Identifies purity of sample at multiple stages of purification
- Measure concentration using BCA assay
 - Colorimetric assay
 - Calculate concentration from standard curve

SDS-PAGE is a denaturing gel

Purity: Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

- Laemmli sample buffer / loading dye:
 - SDS
 - β-mercaptoethanol (BME)
 - bromophenol blue
 - glycerol

Boiling:

How are proteins separated?

- Laemmli buffer and boiling results in _____ and ____ charged proteins
- SDS-PAGE separates proteins by

- Electrophoresis completed in TGS buffer (running buffer)
 - Tris-HCl
 - SDS
 - Glycine

How are proteins visualized?

Coomassie brilliant blue G-250 dye used to stain gel after electrophoresis

- Red if unbound (cationic form)
- Blue if bound to protein (anionic form)
- Hydrophobic and electrostatic interactions with basic residues
 - Arg (also His, Lys, Phe, Trp)

Ladder S1 S2 S3

How are proteins visualized? (Today?)

Trihalo compound binds tryptophan and generates a fluorescent signal

Be mindful when assessing SDS-PAGE protein samples

Consider the order of your samples:

- 1. molecular weight ladder
- 2. pellet
- 3. lysate
- 4. flow-through
- 5. wash
- 6. elution
- 7. resin

• Figure will be included in your Data Summary!

Gel loading pro tips – Look!! With your ◆◆

Concentration: Bicinchoninic acid (BCA) protein assay

Step 1: Chelation of copper with protein, reduction of copper sulfate to copper ion

$$+$$
 Cu^{2+} $\xrightarrow{OH^{-}}$ Cu^{1+} Cu^{1+}

BCA/Cu¹⁺ absorbance proportional to protein concentration

Standard curve generated using serial dilutions of bovine serum albumin (BSA)

- Use fresh tips between tubes
- Mix well between dilutions
- Be mindful of volumes

Pro Tip: Stock BSA only used for Tube A-C

Tube	Volume of diluent (µL)	Volume of BSA (μL)	Final concentration of BSA (μg/mL)
Α	0	300 of stock	2000
В	125	375 of stock	1500
С	325	325 of stock	1000
D	175	175 of B	750
E	325	325 of C	500
F	325	325 of E	250
G	325	325 of F	125
Н	400	100 of G	25
I	400	0	0 = blank

Pro tip on level of detail for Methods

	Beginner	Intermediate (Methods are here!)	Professional
1)	Combine 7 cups of loosely packed flour, 1 tbsp of yeast, 1 tsp of salt in a large mixing bowl and whisk to combine	 Combine 7 cups of flour, 1 tbsp yeast, 1 tsp of salt and mix Add 3 cups of warm water and mix. 	1) Make a French bread
2)	Add 3 cups of warm, but not too hot water. Comfortably warm is good. Too hot and you will kill your yeast.	3) Knead by hand until a seam no longer forms and the dough springs back slowly when pressed4) Let proof for 1 hour	
 3) 4) 	Using a non-stick spatula, begin to mix. When the dough gets too tough to mix, transfer the dough to a floured surface and knead for 15 minutes To knead dough, push with	 5) Degass the dough and roll out into a 9x13 rectangle. Roll into a baguette and cut in half 6) Proof for 1 hour 7) Preheat oven to 450 F 	

For today...

- Complete the purity and concentration assessments
 - It's good to divide the work load here!
 - Start by deciding who will be in charge of the two different techniques today

For M1D5...

- Create a data figure of your purification results
 - must include SDS-PAGE gel
- Outline your Research Talk
 - See Assignments page for details and Homework page for checklists
 - Focus is aggregation experiment, just put a placeholder for actual results

Data figure example

- Image should not be the entire page
 - Only needs to be large enough to be clear / visible

- Title should be conclusive
 - Don't include what you did, rather state what you found (take home message)

- Caption should not detail the methods or interpret the data
 - Define abbreviations, symbols, etc.
 - Info needed to "read" figure

Figure 1: Development of BRET assay to monitor EGFR and SH2 domain interactions. CHO-K1 cells were transfected with Citrine-EGFR (A) and renilla luciferase (RLuc)-tagged SH2 domains from PLCg, Grb2, CTEN, and Shc3 (B). Western blots of CHO-K1 lysates were probed with anti-EGFR (A) or anti-RLuc (B) antibodies. Arrowheads indicate the expected molecular weight of the RLuc-tagged proteins; (1) RLuc-SH2-PLCg, (2) RLuc-SH2-CTEN, (3) RLuc-SH2-Grb2 and RLuc-SH2-Shc3, and (4) RLuc alone. Mock indicates no cDNA was utilized during transfection. (C) For CTEN only, BRET signal was quantified using a luminometer after stimulation of CHO-K1 with 100 ng/mL EGF for 15 min.

Notes on the Research Talk

- Individual assignment
- Three (3) minute video of you talking directly into the camera
- No visual aids allowed
 - Introduce yourself and your project
 - Highlight key results with quantitative information
 - Place your work in the scope of the larger field
- No need to state you are doing a class project or anything about 20.109
- Homework = outline
 - Introduction of your project
 - Key results from your research (including a statement as to the method(s) used to generate data)
 - Take-home message