M2D1: Complete *in silico* cloning of dCas9 & actual confirmation digest

10/13/16

- 1. Pre-lab Discussion
- 2. Design primers to dCas9
- 3. In silico PCR amplification, digest, and ligation
- 4. Actual (wet-lab) diagnostic digest of pdCas9

(Almost) done with Mod1!

- Mini-presentation
 - due 10pm on Saturday, October 14
 - You don't have to be exhaustive;
 tell a focused story

Data summary

- ✓ draft due 10pm on Wednesday, October 11
- receive all comments by Monday, October 16th
- revision due 10pm on Sunday, October 22nd
- Blog post
 - due 10pm on Monday, October 23

Sign up for journal club (M2D2 homework)

- Sign up on wiki for which day you will present:
 M2D4 (October 25th) or M2D6 (November 1st)
- Pick 1 of 20 papers, or suggest your own
- Reserve paper by adding name next to it [Bagnall/WF/TeamColor]
 - First come first serve!
 - Only one T/R and one W/F student per article
 - Don't pick a paper randomly

Slot	Day 4 (T/R)	Day 6 (T/R)	Day 4 (W/F)	Day 6 (W/F)
1				
2				
3				
4				

"insert"
"fragment"

dCas9

"vector"

"backbone"

p,tetO-1

How is DNA engineered?

1. PCR amplification of DNA:

specific primers to gene of interest

dNTPs

Polymerase

2. Digestion:

Restriction enzymes (endonuclease)
Sticky (or blunt) ends

3. Ligation:

DNA Ligase

Seals backbone Phosphodiester bonds

1. PCR amplification of DNA Defining terminology

top strand: 5'-->3'

1. PCR amplification of DNA Designing primers

Landing sequence: match to dCas9

5'

Nontemplate

Sense

Coding

Template

Anti-sense

Noncoding

 Flap sequence: contains endonuclease recognition sequence and junk DNA

BgIII

elongation: 5'-->3'

forward primer

landing

3'

1. PCR amplification of DNA Primer design guidelines

- Length
 - 17-28 base pairs
 - long enough to be specific, short enough for easy annealing
- GC content
- AT: 2 H bonds
- 40-60%GC: 3 H bonds
- GC clamp at ends
- T_m(primer)
 - $< 65 \,^{\circ}\text{C}$
- Avoid secondary structures
 - hairpins
 - complementation w/in primer sequence
- Avoid repetitive sequences
 - Max of 4 di-nucleotide repeats (ex. ATATAT)
 - Max of 4 bp in a run (ex. GATGGGG)

1. PCR amplification of DNA Three major PCR steps—which temperature & why?

- Melt
 - − 95 °C
 - break hydrogen bonds
- Anneal depends on primer sequence
 - $-T_m(primer) = 1/2 primer annealed to target$
 - $-T_{anneal} \sim T_{m}(primer) 5^{\circ}C$

- Extend
 - 72 °C (for Taq)
 - 1000 bases/min

Leslie's favorite PCR animation

http://learn.genetics.utah.edu/content/labs/pcr/

2. Digestion

Restriction endonucleases create sticky ends on dCas9 insert and plasmid backbone

3. Ligation

Insert dCas9 into expression vector (backbone) to create new plasmid (pdCas9)

Confirmation digest considerations

- Do you have access to the enzymes?
- Are the two enzymes compatible?
- Are fragments easily distinguished on an agarose gel?

Today in lab

- 1. Reproduce in silico (in Benchling) the cloning of pdCas9
 - Design primers that would amplify the gene dCas9
 - Depict PCR amplification product
 - Digestion of dCAS9 PCR product and vector by restriction enzymes
 - Ligation of insert and vector ** at 2:30pm we will all work through this calculation together
 For now, skip Part 3: #1-6
- 2. Set up confirmation digests of pdCas9 for agarose gel electrophoresis
 - Choose restriction enzymes for diagnostic digest
 - Calculate volumes of digest components
 - Set-up digest and leave overnight at 37°C

Ligation calculation

Goal: Calculate volumes of insert and backbone needed for ligation

Knowns:

- Need 50-100 ng backbone
- Backbone: 2592 bp
- Insert: 4113 bp
- Molar mass ~660g/(mol*bp)
- Desired molar ratio of insert to backbone is 4:1

Missing information needed to know what volumes of backbone and insert to use:

volume concentration of DNA

Use recovery gel to estimate insert and backbone concentrations

Goal: Calculate volumes of insert and backbone needed for ligation

Knowns:

- Need 50-100 ng backbone
- Backbone: 2592 bp
- Insert: 4113 bp
- Molar mass ~660g/(mol*bp)
- Desired molar ratio of insert to backbone is 4:1
- Concentration of insert: 20 ng/uL
- Concentration of backbone: 40 ng/uL

Calculate 4:1 (insert:backbone) *molar* amounts final volumes for ligation

1. Calculate moles of backbone

- 2592 bp * (660 g / (mol*bp)) = 1.71 x 10⁶ g/mol
- so $_{50}$ ng / (1.71 x $_{10^6}$ g/mol) = $_{2.9}$ x $_{10^4}$ -14 mol

2. Determine moles of insert needed (4x backbone)

- 4 x 2.9x10^-14 ~ 1.2x 10⁻¹³ mol
- with 4113 bp * (660 g / (mol*bp)) = 2.7 x 10⁶ g/mol
- so use 1.15 x 10^{-13} mol * 2.7 x 10^6 g/mol ~ 310ng

1, 2

3. Calculate volume of backbone and insert needed

- Backbone: $\frac{50}{40}$ ng/($\frac{40}{40}$ ng/uL) = $\frac{1.25}{40}$ uL
- Insert: 310ng / (20 ng/μL) = $^{15.5}$ μL

scale down: 1 uL backbone, 12.4 uL insert

Optimal backbone-to-insert ratio

- Ideally, want 4:1 insert:backbone
 - molar ratio, not mass or volume
- What if too much insert?

multiple inserts daisy-chained, inserted into backbone

What if too much backbone?

backbone ligating to other backbone