M2D3: Generate gRNA plasmid

- 1. BE Communication workshop: Journal Club presentations
- 2. Pre-lab discussion
- 3. Set up reaction to generate gRNA plasmid

You can't change your journal paper after Friday @ 5pm. If you do change your paper before then email all instructors.

M2 major assignments

- Research Article (20%)
 - individual, submit on Stellar
 - word document
 - due 11/20 (no revision)
- Journal Club Presentation (15%)
 - individual, during lab section, video recorded
 - powerpoint slides due 1pm on Stellar Oct 24 or Oct 31
- Lab quizzes
 - M2D5 and M2D8
- Notebook (part of 10% Homework and Notebook)
 - one day will be graded by Eric announced M2D8
- Blog: http://be20109f17.blogspot.com/ (part of 5% Participation)
 - by 10/23 (Mod1 material)
 - by 11/21 (Mod2 material)

≡ Q Q BE 20.109 (Fa17) Class Blog

- You will receive an invitation to join the blog tomorrow
- Possible topics listed on the blog
- Details about use:
 - Do not publish MIT logo
 - Do not post photographs with names tagged
 - Do not write malicious comments
 - Do not plagiarize

Mod 2 experimental overview

Use of Site-directed mutagenesis (SDM) to engineer plasmid DNA: NEB Q5 SDM kit

 Create specific, targeted changes in double-stranded plasmid DNA

Forward primer:
 contains the desired mutation

PCR product:

linear

Final product:

circular plasmid

Insertion of DNA via SDM

reverse primer anneals back to back with 5' forward primer

SDM ingredients and Thermocycling conditions

Additional steps necessary to recover circular plasmid product

We have covered two ways to engineer DNA:

"Traditional" plasmid cloning by restriction enzyme digest

Bglll Xhol PCR amplification Xhol Restriction Enzyme Digest Bglll Xhol Ligation

Site directed mutagenesis

Tuesday

Journal Club I

- Submit your presentation slides to Stellar by 1pm Oct.
 24th
- Presentations should be 10min, PLEASE practice your talk out loud at least once
- Tell us a narrative from the paper, you don't have to (and probably can't) present all the data
- You will present from a mac (my computer)
- Q&A will start with student questions, asking questions counts toward your participation grade
- There will be SNACKS
- Please reach out to the instructors and discuss your paper in advance if you feel it will organize your thoughts/presentation

Thursday

M2D5 HW: Intro, Schematic, Discussion

- Draft Introduction
 - Draft the entire first "Big Picture" paragraph
 - overview/ topic sentence (first sentence) of each additional paragraph
 - references in text and brief summary of each reference
- Schematic of Mod2 experimental approach (not overview)
 - Create image (do not take and reference published schematics)
 - Include a figure title and caption
- Draft Discussion for confirmation agarose gel figure
 - Draft a paragraph

Reporting and interpreting your data

RESULTS

- 1. What was the overall goal of these data?
 - State concisely as an introductory sentence.
- 2. If applicable, what was the result of your control?
 - Was it expected?
- 3. What was your result?
 - Was it expected?
- 4. What does this motivate you to do next?
 - Specifically, what experiment follows?

DISCUSSION

- 1. What evidence do you have that your result is correct or incorrect?
 - How do your controls support your data?
- 2. In sum, what do your data suggest or indicate?
 - Do your data support your hypothesis? Why?
- 3. What does this motivate you to do next?
 - Specifically, what is the next research question?

Nicked, supercoiled, & linear DNA

Today in lab...

- 1. Find your gRNA oligo at the front bench and reconstitute in H₂O
- 2. Set up your gRNA insertion/amplification reaction using reagents at front bench
- 3. Work on your Journal Club presentations