

Several CRISPR systems have been identified

Let's review...

Let's review...

Let's review...

How does the engineered CRISPRi system differ from native CRISPR?

Modifications to crRNA / tracrRNA complex

Modifications to Cas9

CRISPRi system: sgRNA

• (s)gRNA molecule is a target sequence and tracrRNA fused by a linker loop such that a single transcript used to direct Cas9 cleavage

(s)gRNA crRNA / tracrRNA complex protospacer PAM target DNA -linker loop 20 nt crRNA crRNA-tracrRNA chimera tracrRNA

sgRNA able to target Cas9 cleavage

- 3' end of crRNA fused to 5' end of tracrRNA to generate chimera molecules (sgRNAs)
- dsDNA substrate 5'labeled for cleavage assay

CRISPRi system: dCas9

 dCas9 protein contains mutated residues D10A and H840A that render it catalytically inactive and unable to cleave DNA, but still able to bind DNA

HNH and RuvC endonuclease domains

- RuvC
 - Endonuclease that resolves Holliday structure, intermediate structure in which dsDNA molecule is linked by single-stranded crossover
- HNH
 - Found in homing endonucleases, restriction endonucleases, transposases

Cleavage requires HNH and RuvC domains

HNH and RuvC domains target specific DNA strands

Schematic of Cas9 DNA cleavage

 RuvC domain (D10A) cleaves non-template / coding strand

 HNH domain (H840A) cleaves template / non-coding strand

 Results in blunt end cut 3 bp from PAM site

Crystal structure of Cas9 / sgRNA complex

CRISPRi inhibition of gene expression

Block transcription initiation

Transcription factor

SgRNA

SgRNA

Block transcription elongation

Effective for both NT and T strands

Effective only for the NT strand

Targeting the coding region with CRISPRi system

- sgRNA sequences designed to target coding region upstream within gene that encodes RFP
 - sgRNA sequences specific to non-template (NT1 – NT3) and template strand (T1 – T3)

Targeting the promoter with CRISPRi system

- sgRNA sequences designed to target promoter region upstream of gene that encodes RFP
 - sgRNA sequences = P1 − P5

CRISPRi blocks transcription

- FLAG-tagged RNAP separated from cellular components
- Associated / bound mRNA were sequenced
- mRNA specific to RFP counted and graphed according to read length

CRISPRi collision model

aTc-inducible promoter used to control CRISPRi inhibition of targeted gene

Components of CRISPRi system

- 1. Plasmid containing gene that encodes dCas9
- 2. Plasmid containing sequence for sgRNA
 - sgRNA sequence is complementary to target sequence
- 3. Target sequence

CRISPRi inactive in absence of inducer

- pgRNA_target expressed constitutively
 - Always transcribed and binding to target gene

CRISPRi inhibits gene expression in presence of inducer

- pdCas9 expressed when aTc added
 - When transcribed associates with pgRNA_target / target gene

What is the take-home message?

 CRISPRi is a tool for non-permanent genetic manipulation

 Know how CRISPRi differs from the native CRISPR system

 Know how the CRISPRi system inhibits expression of a targeted gene

