Module 2: Manipulating Metabolism

CRISPR and genetic engineering

10/31/17

Identifying the cleavage target of Cas9

- Adaptive immune response that confers phage resistance
- Requires crRNA, tracrRNA, and Cas9

What is the target of the native system? Incoming viral DNA or host-transcribed viral mRNA?

DNA vs RNA debate

Many in researchers in phage community convinced RNA interference by CRISPR too inefficient given explosive replication of phage during infection

Data support that Cas9 cleaves DNA

1. Targets in direction of 'sense' DNA more efficient than those of 'anti-sense'

2. Transformation of plasmid DNA blocked

3. Presence of self-splicing RNA sequence in DNA target abolished CRISPR activity

Native CRISPR system cleaves phage DNA

 Adaptive immune response encoded by CRISPR loci and Cas genes

- Mechanism involves three stages:
 - Adaptation
 - Expression
 - Interference

CRISPR system: adaptation

Phage DNA recognized and fragmented by restriction enzyme system, then 'spacers' incorporated into bacterial genome

CRISPR system: expression

Cas9 and Rnase III involved in processing precrRNA, then Cas9 forms complex with crRNA and tracrRNA

CRISPR system: interference

Cas9 / tracrRNA / crRNA bind invading phage DNA and cleave at target sequence that is complementary to 'spacer' sequence

Engineered CRISPRi system

• Modifications to crRNA / tracrRNA complex?

• Modifications to Cas9?

CRISPRi system: (s)gRNA

 (s)gRNA molecule is a target sequence and tracrRNA fused by a linker loop such that a single transcript used to direct Cas9 cleavage

CRISPRi system: dCas9

 dCas9 protein contains mutated residues D10A and H840A that render it catalytically inactive and unable to cleave DNA, but still able to bind DNA

HNH and RuvC endonuclease domains

- RuvC
 - Endonuclease that resolves Holliday structure, intermediate structure in which dsDNA molecule is linked by single-stranded crossover
- HNH
 - Found in homing endonucleases, restriction endonucleases, transposases

Cleavage requires HNH and RuvC domains

Jinek et al. (2012) *Science*. 337:816-820.

HNH and RuvC domains target specific DNA strands

Jinek et al. (2012) Science. 337:816-820.

Schematic of Cas9 DNA cleavage

- RuvC domain (D10A) cleaves non-coding strand
- HNH domain (H840A) cleaves coding strand

 Result in blunt end cut 3 bp from PAM site

Closer look at pgRNA and pdCas9

 Confirmation digest prepared on D1

> Insert (gRNA target sequence) designed on D2

CRISPRi 'inactive' in absence of inducer

pgRNA_target
expressed
constitutively
Always
transcribed and
binding to
target gene

CRISPRi 'blocks' gene expression in presence of inducer HCI aTc pdCas9 p₁ tetO-1: aTc inducible expressed when dCas9 RBS aTc added Term (rrnB) CmR p15A – When Bacterial dCas9 plasmid New base-pairing transcribed Constitutive - pJ23119 region Primer Ec-F (inverse PCR) EcoRI Ball BamHI saRNA associates with 42 bp 40 bp Base-pairing dCas9 S. pyogenes Term handle terminator (rrnB) region pgRNA target / Primer Ec-R CoIE1 AmpR E. coli MG1655 genome Bacterial sgRNA plasmid target gene

Closer look at aTc induction of pdCas9 + anhydrotetracycline (aTc) Tet Repressor (TetR) Tet Response Element (TRE) p₁ tetO-1: aTc inducible Tet promoter regulates dCas9 RBS expression of dCas9 gene Term (rrnB) p15A CmF

Bacterial dCas9 plasmid

Inducible promoter can be used to control dCas9-mediated gene expression

Lei et al. (2013) Cell. 152:1173-1183.

CRISPRi collision model

In the *laboratory*...

Meet at 1p in 16-336 for Journal Club presentations

