M1D7:

Complete data analysis using statistical methods

- 1. Library presentation
- 2. Prelab discussion
- 3. Complete statistical analysis
- 4. Data summary prep!

Due dates are coming soon!

- Data summary (15%)
 - completed in teams and submitted via Stellar
 - draft due 10/4, final revision due 10/14
- Mini-presentation (5%)
 - completed individually and submitted via Gmail
 - due 10/11
- Laboratory quizzes (collectively 5%)
 - scheduled for M1D4 and M1D7
- Notebook (collectively 5%)
 - Submit M1D4 to Aimee (amoise@mit.edu) by 10p tomorrow
- Blog (part of 5% Participation)
 - due 10/5 via Blogspot

Confidence intervals show variance in data

- At 95% confidence interval, there is a 95% chance that the true mean is within the defined range
- Error bars used to represent variance

Calculating confidence interval in Excel

= CONFIDENCE(confidence level, standard dev., size)

Confidence level:

• Standard deviation:

• Size:

How do you customize error bars in Excel?

Enter value calculated for confidence level as custom error bars

Student's *t*-test determines if populations are significantly different

- Assume data follows t-distribution
- At p < 0.05, there is less than a 5% chance that populations are the same (95% chance that populations are different)
- Examines signal (means):noise (variance) ratio

Calculating Student's t in Excel

P = TTEST (array1, array2, 2, 3)

• Arrays:

• 2 = two-tailed test:

• 3 = population variances not assumed:

How will you statistics in your data analysis?

• Student's t-test can only be used to compare two populations

What if data are not significant? Almost significant?

Let's review our Mod 1 project goals...

What is our overall goal/question in this project:

What are the conditions we are using to address this:

Let's review our Mod 1 experiments...

γH2AX

How is damage indicated / shown?

What type of damage is measured?

Advantages?

Disadvantages?

CometChip

How is damage indicated / shown?

What type of damage is measured?

Advantages?

Disadvantages?

Making progress on the Data summary!

Title: take-home message

Abstract: Paragraph, NOT in bullet points!

In bullet points:

Background and Motivation (include citations)

Results and Interpretation

Implications and Future work (include citations)

References (see wiki for format suggestions)

Data summary structure / logistics

- To be submitted as a powerpoint file!
 - Change page settings such that 'slides' are portrait and 8.5" x 11"
 - Upload to Stellar (draft due Oct 4 at 10pm, revision Oct 14 at 10pm)
- Each figure will be included as a separate Data slide
 - Image should be at the top of the slide with title and caption
 - Results / Interpretation text should be included on same slide
 - Though figures are separated into Data slides, the story should be cohesive between figures!

Review of Background & Motivation section...

- Impact statement
 - General background describing relevant / previous research
- Specific background (e.g. BER, H₂O₂, Arsenic, CometChip, H2AX)
 - Introduce topics (pathways, specific technologies, etc)
 - Include BER pathway figure!
 - Reference overview schematic figure
 - Narrow focus to the specific question addressed in your study
- Knowledge gap / statement of problem
 - State what is unknown
 - Include your research question!
 - What do you propose will be the outcome of your study?
- A brief preview of your findings
 - Here we show...
 - End with broad implications of the study

Review of Results & Interpretations section...

- Figures and captions
 - Organize figures logically!
 - Use figure subpanels (label with letters)
 - Limit text on the image, move extra details / explanation to the caption
 - Use appropriately sized images
 - Include description title with take-home message
 - Include introductory sentence at start of caption
- Results and Interpretation (use subheaders)
 - State the goal / intent / purpose of experiment in the first bullet
 - What you did: experiments and expectations, describe controls
 - What you found: quantitatively describe your result, referring to the figure ("Figure 1a shows..."
 - What does this indicate: interpret your results, what does it mean?
 - What does this motivate you to do next: transition to next experiment

Review of Implications & Future works section...

- Start with 'here we showed...'
 - Restate major results and broad implications
 - Follow same order as in Figures/Results
- Describe your conclusions from your data
 - If necessary, describe caveats of experiment and suggest improvements
- Identify unknowns and speculate (within reason)
 - Don't make huge generalizations or overreach
- Propose future experiments, identify new questions that arise
- Come back to the big picture / impact statement topic introduced in background

For today...

- Apply statistical analysis to data
- Get a start on your Data summary!!

For M2D1...

- Outline for Mini-presentation
- Read project overview for Mod 2

Notes on Mini-presentation homework...

- Bullet / outline format
- Follow time and content guidelines:
 - Introduce yourself and your research project
 - Clearly state hypothesis to identify main question
 - Be quantitative when stating results (NOT "this was more/less than...")
 - For now, use placeholder statements for key findings
- Logistics
 - Submission should not be edited / spliced
 - Ensure that you can be clearly heard in the recording
 - Be mindful of background distractions
 - Submit video to course Gmail (bioeng20.109@gmail.com)!

Rubric for Mini-presentation

Category	Elements of a strong presentation	Weight
Introduction	 Introduce yourself and the research Summarize the background information necessary to understand the research Provide a clear and concise description of the central question / hypothesis 	25%
Methods & Data	 Provide ONLY the method information necessary to understand the results Give complete and concise explanations of the results Relate the results to the central question 	25%
Summary & Conclusions	Highlight the key finding(s) relevant to the central question / hypothesis	25%
Organization	Give a logical, easy-to-follow narrativeInclude transition statements	15%
Delivery	 Show confidence / enthusiasm and speak clearly Use appropriate language (technical or informal, as appropriate) Be mindful of the time limit (3 minutes +/- 15 seconds!) 	10%