Please email if you want to chat fraenkel@mit.edu

Ernest Fraenkel

Structure of the Unit

- Wet lab and computational lab focus on measuring and understanding response to a drug (etoposide) in cell culture
- In the computational labs, you will compare etoposide changes in 20.109 data and a published dataset.
- We will use concepts you have seen in 6.0002 to analyze these data.
- Computational assignments will give you the building blocks for your written report.
- The lab will be conducted in the programming environment called "R".

Why R?

Lecture Schedule

Date	Торіс
March 10 th	Clustering and PCA
March 12 th	Analyzing RNA-Seq
March 17 th	Big Data for BE
March 19 th	Transcriptional Regulation
SPRING BREAK	
March 31 st	Molecular Networks
April 2 nd	Single-cell Analysis

Write on Board Before Class: Learning Objectives

- See the big picture of this unit
- Choose the right distance metric to compare the expression of two genes
- Describe why you would cluster expression by genes or experiments
- Manually cluster small vectors using hierarchical or k-means clustering
- Read a dendrogram
- Describe the results of Principal Component Analysis (PCA)

Comparing the Expression of Genes

Draw on LEFT Board and keep

Comparing gene expression

- Draw gene expression patterns on board
- Which of the genes on this plot are most similar?
- How do we quantify similarity of expression?
- Let's consider the simplest description first.
 - A and B are most similar.
 - Euclidean distance would describe this type of similarity.

6

Distance Metrics

Which other pairs of genes might be co-regulated? Can we capture the similarity of

these patterns?

Euclidean distance provides an intuitive description:

In our timecourse: $X_A = (x_{A1}, x_{A2}, \dots x_{AN})$

 $X_{b} = (x_{B1}, x_{B2}, \dots x_{BN})$

$$d(X_A, X_B) = \sqrt{\sum_{i=1}^{N} (x_{Ai} - x_{Bi})^2}$$

Pearson Correlation

- To understand Pearson Correlation, we need to define a Z-score
- Z_{Ai}= z-score of gene A in experiment i:

Pearson correlation from +1 (perfect correlation) to -1 (anti-correlated) Distance = 1-r_{A,B}

$$r_{A,B} = \frac{\sum_{i=1}^{N_{expt}} Z_{Ai} Z_{Bi}}{N}$$

$$r_{A,B} = -0.01$$

$$r_{A,D} = -1.0$$

$$r_{B,D} = 0.007$$

$$r_{A,B} = \frac{\sum_{k=1}^{Nexpt} Z_{kA} Z_{kB}}{N}$$

Distance Metrics

Write on Board: Learning Objectives

- Choose the right distance metric to compare the expression of two genes
- Describe why you would cluster expression by genes or experiments
- Manually cluster small vectors using hierarchical or k-means clustering
- Read a dendrogram
- Describe the results of Principal Component Analysis (PCA)

Many ways to plot expression

Heatmap

Many ways to plot expression

Heatmap

Clustering

Clustering 8600 human genes based on time course of expression following serum stimulation of fibroblasts

Key: Black = little change Green = down Red = up

(relative to initial time point)

What can you learn from the clustering genes?

Clustering 8600 human genes based on time course of expression following serum stimulation of fibroblasts

Key: Black = little change Green = down Red = up

(relative to initial time point)

Why might you cluster experiments?

- (A) cholesterol biosynthesis
- (B) the cell cycle
 - the immediate-early response
- D) signaling and angiogenesis
 - E) wound healing and tissue remodeling

Why cluster?

- Cluster genes (rows)
 - Measure expression at multiple time-points, different conditions, etc.

Similar expression patterns may suggest similar functions of genes

- Cluster samples (columns)
 - e.g., expression levels of thousands of genes for each tumor sample

Similar expression patterns may suggest biological relationship among samples

Two types of approaches: Agglomerative & Divisive

Agglomerative:

- Initialize: Each vector is in its own cluster
- Repeat until there is only one cluster:

– Merge the two most similar clusters.

Step 1: each gene is its own clusterStep 2: combine the two most similar genesStep 3: find the two most similar clusters

Several options:

minimum distance between members of cluster A,B maximum distance between members of cluster A,B average distance between members of cluster A,B

New cluster

... but I have not told you how to compute distance between the two genes in the new cluster with individual genes

Dendrograms

- The final cluster is the root and each data item is a leaf
- The heights of the bars indicate how close the items are
- Can 'slice' the tree at any distance cutoff to produce discrete clusters
- The results will always be hierarchical, even if the data are not.
- The order of the leaf nodes is not meaningful