M3D1:Growth of phage materials 11/15/17

- 1. Purify M13 bacteriophage (phage)
- 2. Prelab during 60min incubation
- 3. Finish M13 purification and measure concentration
- 4. Incubate phage with nanoparticles (AuNP/NiNP)

Thank you, Eric L. and Jifa Q. (Belcher Laboratory)!

Module 3: biomaterials engineering

How do material choice and nanoparticle size affect battery capacity?

Phage purification using polyethylene glycol (PEG) in 2.5M NaCl

Determining phage titer (number of virus):

- By plating: plaque assay
 - Phage slows E. coli growth = plaque (cleared zone)
 - Plaque-forming units: PFU/mL

phage / mL =
$$\frac{(6 \times 10^{16}) (A269 - A320)}{\# \text{ bases in phage genome}}$$

Quartz cuvettes are expensive!

M13 is a high aspect ratio phage coated in proteins encoded by ssDNA loop

M13 virus life-cycle has four essential steps

M13 is a nonlytic bacteriophage

(so we can easily get lots of it)

Phage display allows agnostic selection of useful peptide sequences (typically binding)

M13 are engineer-able biomaterials

negatively charged

- Our p8 coat protein was mutated to contain sequence DSPHTELP
- Modified p8 proteins bind single wall carbon nanotubes (SWCNT), iron, gold, and other cationic metals
- Example of this virus in literature (Science, 2009):

M13 nanowires as battery cathode

mineralized on phage

Image: George Sun

You will make a "Gold Standard" battery and an experimental battery

- Gold standard: 4nm AuNPs
- Choice of combination: 4/6nm, Au/Ni and ratio

NP = nanoparticle

Considerations for experimental battery: nanoparticle material and size

- Redox coupling
 - Li/material interaction: Ni could oxidize at relevant voltage (Au will not)
- Conductivity
 - Au is more conductive than Ni
- Internal battery reaction catalysis
 - Li+ in solution → Li+ embedded
 - Surface area to volume ratio

Design with your lab partner. What is your hypothesis?

You will make two flasks—one for each battery

Gold standard

- 4e13 Phage
- 4 nm Au NPs (40 NPs/phage)
- Water (final volume 50 mL)

Experimental

- 4e13 Phage
- 4 nm/6 nm Au/Ni NPs (up to 100 NPs/phage)
- Water (final volume 50 mL)

Example biomineralization from nature:

Engineering biomineralization using M13 phage:

- Environmental conditions
 4C, mild buffer, H20
- Structural organization
 wire-like virus
- M13 provides scaffold for Li(FePO₄) cathode construction

Fe = Li+ conductor/storage
Au/Ni = e- conductor

Today in lab

- 1. Finish phage purification
- 2. Calculate phage number
- 3. Begin construction of phage-NP-FePO₄ nanowires (2 flasks, one per battery)
 - Choose gold / nickel size, quantity

M3D2 HW: Describe **FIVE** recent findings that could potentially define an interesting research question.

- Formally cite the finding
- Write 3-5 sentences summarizing the finding