M1D3: Gamma-H2AX assay antibody staining and optimize CometChip loading

09/17/19

- 1. Pre-lab Discussion
- 2. Start H2AX assay EdU and antibody staining
- 3. Load CometChip with CHO cells
- 4. Image CHO cell loading

Overview of Module 1: Measuring Genomic Instability

Aim: Evaluate effect of Arsenic exposure on methylation induced base excision repair (BER)

γH2AX assay

Optimize CometChip loading

CometChip assay

Measuring dsDNA damage and determining if cells are in S phase

Using immunofluorescence (IF): yH2AX assay to detect double-strand DNA breaks

- Histone H2AX phosphorylated at Ser139 if DSB
- Antibodies against γH2AX (phosphorylated form)

	protein of interest	A YHZAX
2° 1° primary Ab	primary antibody	Mouse anti-human anti- XHLAX
	secondary antibody	k goat anti- Mouse
XH2AX	Fluorophore (conjugated to secondary antibody) exc./ em. wavelengths	excitation 594/617 nm emiller

Using immunofluorescence (IF) and EdU reaction:

Today: Load cells onto the CometChip

side view

What this looks like in real life

8 00 00

- Glass plate
- Bottomless 96well plate
- 4 binder clips
- 37°C incubator

Critical steps:

- Cell loading
 - Line up macrowells carefully within the M^{AS} pattern drawn on gel bond
- Washing
 - Not too much!
 - Across the top of the glass plate
 - Wash from Low to high concentration
- 1% LMP agarose gels quickly
 - Leave glass plate under comet chip
 - Dispense it drop-by-drop with P1000
 - Leave it undisturbed for 3 min then move to 4°C for 5 min

Designing the cell loading experiment

Experimental question: What is the minimum number of cells needed in each macrowell to obtain efficient loading?

<u>Considerations</u>: size of cell/shape of cell microwell size (40 mm) -# of microwells per macrowell area of macrowell Variable. Concentration of cell baded ("ign #] Variable: <u>Control</u>: ho cells (negative control)

Repeatability:

triplicate 3 macrowells/condition

Designing the cell loading experiment

Α

В

С

Condition A will be 'no cells loaded' control

Condition B will be the lower cell number decided by your team

Condition C will be the higher cell number decided by your team

Incubate cells at 37°C for 15min

Major assignments for Mod1

- Data summary draft
 - due by 10pm on Mon., October 14
 - revision due by 10pm on Sat., October 26

Summary content

- 1. Title
- 2. Abstract
- 3. Background & Motivation
- 4. Figures, Results & Interpretation
- 5. Implications & Future Work
- Mini presentation due by 10pm on Sat., October 19
- Blog post for M1 due by 10pm on Tues., October 15

How do we communicate our protocol? <u>Tips to write Methods (due M1D4)</u>

- Include enough information to replicate the experiment
 - list manufacturers name
- Use subsections with descriptive titles
 - Put in logical order
 - Begin each subsection with sentence to introduce purpose
- Use **clear and concise** full sentences
 - NO tables and lists
 - Passive voice expected
- Use the most flexible units
 - Write concentrations (when known) rather than volumes
- Eliminate 20.109 specific details
 - Example "labeled Row A, Row B..."
 - Do not include details about tubes and water!
 - Assume reader has some biology experience

Example methods section~

Tissue Culture: howan lym. (gift from Engelward Lab) TK6 cells were grown in a flask with 12ml RPMI (o'. R's (WWAA) supplemented with FBS. Cells were split using 0.25% Atrypsin. The cells were kept in an incubator at 37°C.

Improving a Methods paragraph

Maintaining lymphoblastoid cell line(s):

TK6 human lymphoblastoids (gift of the Engelward Lab, MIT) were cultured at 1 x 10⁴ cells/cm², cell number calculated via hemocytometer and trypan blue stain. Cells were grown in RPMI medium 1640 (Invitrogen) supplemented with 10% fetal bovine serum (Atlanta Biologicals) and 100 units/mL penicillinstreptomycin (Invitrogen). Culture conditions were maintained at 37°C, 5% CO2 and 95% relative humidity.

In lab today

- 1. Transfer coverslips to staining chambers and star EdU and antibody staining
- 2. Determine loading conditions and load CHO cells onto CometChip
- 3. Take images of CHO cells loading before you leave

HW due M1D4 (with lab partner)

- 1. Write methods section for protocols on M1D1 through M1D3
 - Consider how to divide the work with lab partner
 - Follow guidelines discussed today
- 2. (Individual) Visit Comm Lab before M1D5.