M2D2: Design gRNA sequence for CRISPRi system

- Prelab discussion
- Diagnostic digest electrophoresis
- Design gRNA primer to target (and inhibit) gene in the metabolic pathway of E. Coli

Quick Recap

Mod2 Overview

Research goal: Increase the yield of commercially valuable byproducts in *E.coli* using CRIPSRi technology to target genes involved in mixed-acid fermentation pathway.

Last Lab:

Cloned pdCas9 construct to generate 1st component of CRISPRi system

This Lab:

Choosing metabolic gene of interest and designing sgRNA to target it

Next Lab:

Will clone sgRNA into vector to create 2nd component of CRISPRi system

Using CRISPRi as an experimental tool

- sgRNA (single guide RNA) binds to region of gene of interest
 - contains a dCas9 handle
- dCas9 uses sgRNA as guide and sits on DNA without cleaving it
 - blocks transcription

Today's goal:

Design gRNA sequence to repress a gene, such that the production of ethanol or acetate will increase.

Considerations for successful gRNA primer design

Primer size range: 20-25bps

- 1) Pick a gene target to inhibit
- 2) Where is the gene?
- 3) Determine target sgRNA sequence location
- 4) Template vs Nontemplate targeting
- 5) Check RNA specificity (BLAST)
- 6) Assemble sgRNA sequence

5' UTR? Upstream regulatory element?

Coding region?

Which part of your selected gene is best to target?

Block transcription initiation

Effective for both NT and T strands

Block transcription elongation

Effective only for the NT strand

Which part of your selected gene is best to target?

Block transcription initiation

Block transcription elongation

Effective for both NT and T strands

Effective only for the NT strand

<- Good resource for design help! Paper on the landing page of module

Design of the sgRNA

Design of the sgRNA

Nontemplate strand targeting

Design of gRNA for CRISPRi system

- (1) Target the TEMPLATE DNA strand: gRNA sequence will be the <u>same as</u> the <u>transcribed</u> (nontemplate) sequence.
- (2) Target the NONTEMPLATE strand: gRNA sequence will be the <u>reverse-complement</u> of the <u>transcribed</u> sequence.

Design of gRNA for CRISPRi system

- (1) Target the TEMPLATE DNA strand: gRNA sequence will be the <u>same as</u> the <u>transcribed</u> (nontemplate) sequence.
- (2) Target the NONTEMPLATE strand: gRNA sequence will be the <u>reverse-complement</u> of the <u>transcribed</u> sequence.

Use the KEGG database to find sequence information for your target gene

Allows you to target upstream regulatory elements

(NT in this case = nucleotide)

Use KEGG database genome map to identify location of your target gene relevant to other genes

Use BLAST (Basic local alignment search tool) to assess off-target binding

Sequence ID: CP014348.1 Length: 4657541 Number of Matches: 163 Range 1: 3891267 to 3891292 GenBank Graphics Next Match Previous Match Score **Identities** Gaps Strand Expect Plus/Plus 52.0 bits(26) 1e-07 26/26(100%) 0/26(0%) Query 1 ATGAAACTCGCCGTTTATAGCACAAA 26 Sbict 3891267 3891292 Range 2: 392405 to 392417 GenBank Graphics Next Match Previous Match First Match Score **Expect Identities** Gaps Strand 26.3 bits(13) 5.8 13/13(100%) 0/13(0%) Plus/Minus Query AAACTCGCCGTTT 16 Sbjct 392417 392405 Range 3: 1595715 to 1595727 GenBank Graphics Next Match Previous Match First Match **Identities** Score Gaps Strand Expect 26.3 bits(13) 5.8 13/13(100%) 0/13(0%) Plus/Minus Query 1 ATGAAACTCGCCG 13 Sbict 1595727 1595715

DNA gel electrophoresis

 Similar concept to SDS-PAGE

• (-) charged DNA migrates through 1% agarose gel toward positive anode

bio.libretexts.org

 DNA fragments are separated by size

Diagnostic Digest example

Why are there multiple bands in the uncut plasmid?

Is that OK?

For Today:

- Load and electrophorese DNA gel of diagnostic digest
- Design gRNA primer to improve ethanol or acetate production
 - MUST upload primer to Wiki before leaving class!

For M2D3:

- Read your journal club article and chose 4 figures which are most important to the paper's main conclusion
 - Answer questions on the wiki about those 4 figures
- Email Noreen about presentation day

Today is a lot of design work on your computer!

- BE Faculty Conference Room is open for you
 - 16-339

- Office hours begin at 5pm in 16-339
 - Don't need to have specific questions
 - Space to work