M1D3: Prepare and treat cells for CometChip Experiment

09/18/16

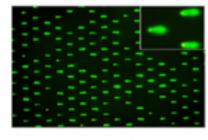
- 1. Communication workshop 56-614
- 2. Determine # cells to load
- 3. Load CometChips with +DNAPKcs and -DNAPKcs cells
- 4. Induce DNA damage with H₂O₂ and lyse cells

Announcements

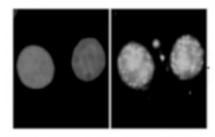
^{*}Remember to spray & wipe benches with 70% ethanol before and after work

^{*}Remember to empty benchtop buckets at end of day

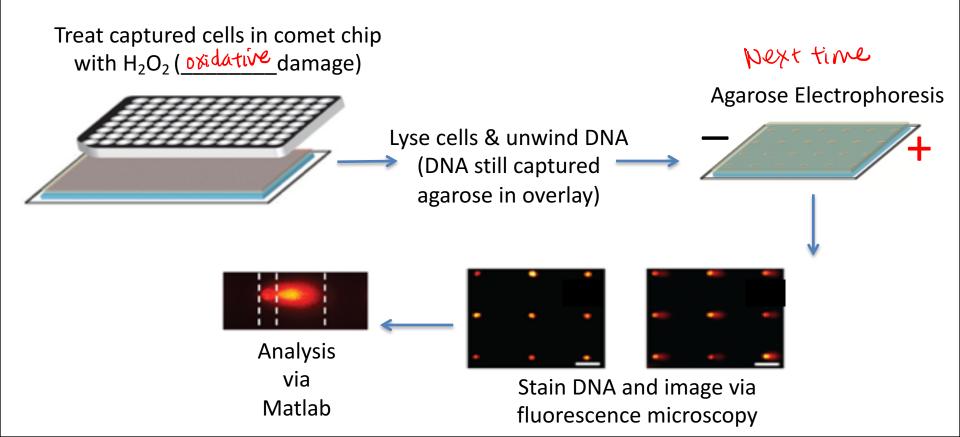
^{*}No lab on Thursday!


Overview of Module 1: Measuring Genomic Instability

1. Optimize comet chip assay


Test loading variables

2. Use comet chip assay to measure DNA damage


Measure effects of H₂O₂ on +/- DNA-PK cell lines

3. Use immuno-fluorescence assay to measure DNA damage

Examine effect of H₂O₂ on γH2AX foci formation

Assess DNA damage in tumor cells with & without DNAPKcs

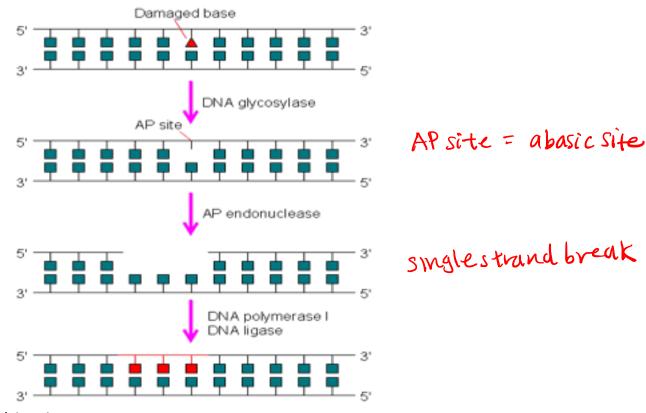
How does H₂O₂ damage DNA?

$$H_2O_2 + e^- \rightarrow HO^- + \bullet OH$$

ROS = reactive oxygen

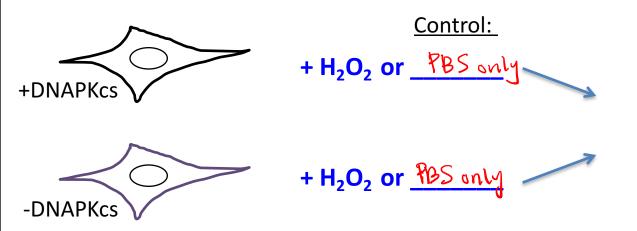
Species

2 H⁺ + 2 e⁻ + H₂O₂ \rightarrow 2 H₂O

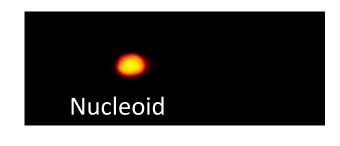

Guanine

8-oxo-Guanine

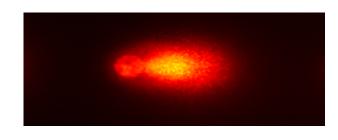
How does H₂O₂ damage DNA?


Mutation if replicated $\subseteq G \subseteq \longrightarrow AT$

How do our cells respond? Typically, Base Excision Repair (BER) Pathway


Does DNAPKcs have a role in DNA repair in response to oxidative damage?

- BER can lead to <u>Aoubles trand breaks</u>,
 which can be repaired by <u>non-homologous endjoining</u> (NHEJ)
- DNAPKcs = DNA-dependent protein kinase, catalytic subunit
- DNAPKcs involved in NHEJ


Measure
"damaged" DNA
via CometChip

Output of Alkaline CometChip Assay

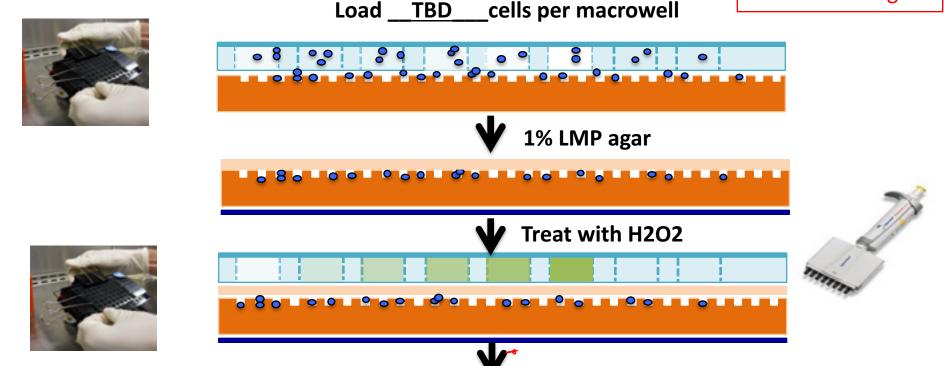
No Damage

- Supercoiled nucleoid
- Little or no migration

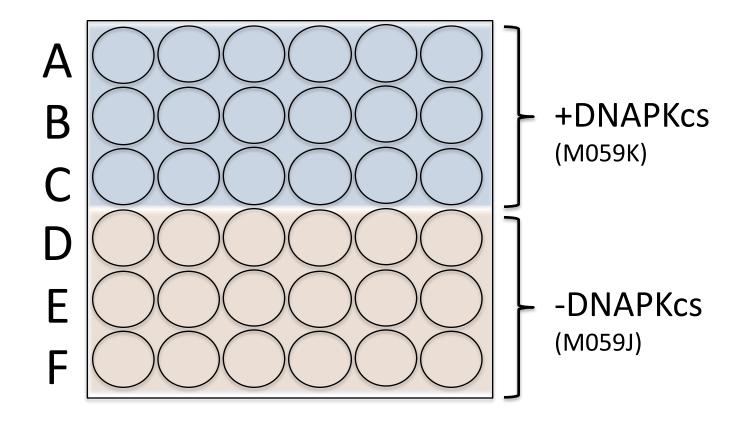
High Damage

- SSBs, abasic sites, alkali labile sites
- forms a "Comet tail"

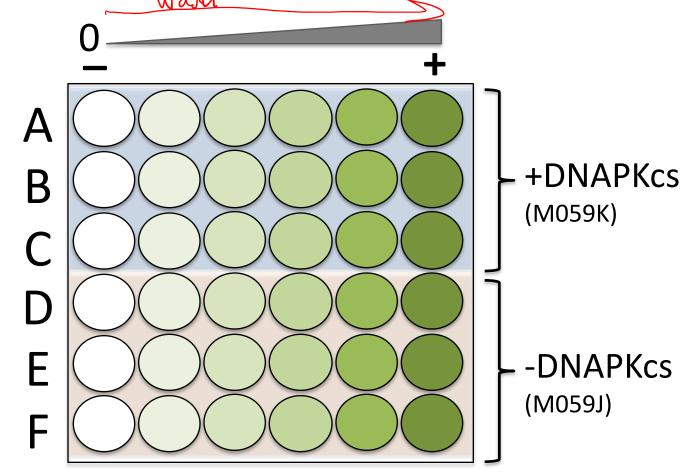
Genomic damage from direct strand breaks



AND REPAIR INTERMEDIATES


Logistics of today's experiment

Be sure to mix your cells right before loading!!!



Wash off mutagen (carefully!) and leave CometChip in lysis buffer

Keep track of the wells – 2 cell lines!

Keep track of the wells – 6 concentrations!

Preparing H₂O₂ dilution series:

Treat with: 0, 0.01, 0.1, 0.25, 0.5, 1 μ M H₂O₂

- 4°C for 20min
- Add 100µl of drug dose to each macrowell
- **Triplicate**: each concentration will have three macrowells for each cell line
 - Make mL of each concentration

Stock 3: 1 uM \angle

$C_1V_1 = C_2V_2$	
) (MM1) = 17 (MM1)	2
$V_1 = 2 \dots$	

$$(ImM)V_1 = (I_MM)(2mL)$$

 $V_1 = 2nL$

2ml of ImM HzOz + 1998 ml of PBS => 2ml of ImM

Handling tips:

Concentrated H₂O₂ (10M)

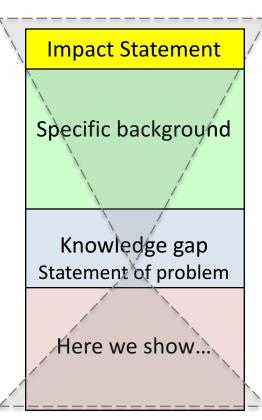
Minimize waste!

should be left at front bench

Keep H₂O₂ on ice at all times

Note: 2 uL minimum volume on your pipettes

		0	0.01	0.1	0.25	0.5	1 uM
	Stock 3						ImL
	PBS						Oml


In lab today

- 1. Calculate volume of cells to load, obtain cells from instructors and load cells onto CometChip
- 2. Calculate volumes necessary for mutagen dilutions and check with instructors.
- 3. Treat CometChip with mutagen and carefully wash.
- 4. Leave CometChips in lysis buffer.

For next time

- 1. Write topic sentences (1st sentence) for each paragraph that would be in your Data Summary's Background and Motivation section
 - Remember to include references with summary & why you chose it
- 2. Visit Comm Lab before M1D5.

What goes into a background/motivation section?

- Your research is anchored in a general topic that your audience cares about or could be interested in.
 - Focus on describing previous work in the field
- Specific background connects your project with the general background.
 - Minimum essential information
 - References current work in the field
 - Introduce specific technologies necessary for understanding the project
- The question you address is clearly articulated, connected to the background, and has appropriate scope for the project
 - Give evidence of incompleteness of current understanding, therefore motivating the investigation
 - Include a space holder for your hypothesis (or come up with one)
- A preview of your findings and their implications
 - Light on Methods

What goes into your introduction?

Impact Statement

Specific background

Knowledge gap
Statement of problem

Here we show...

Choose one narrative

DNA damage/cancer (gliobiastoma) repair oxidativestress BER, NHEJ 5 DNAPKCS 5 Comet chip My hapothesis is ... Here we show ...

Let's combine our data from last time: How many cells should we load per microwell?

	M059J	(-DNAPKcs)	M059K (+DNAPKcs)		
Team	Row B cell # loaded (% filled)	Row C cell # loaded (% filled)	Row B cell # loaded (% filled)	Row C cell # loaded (% filled)	
Red	19K (9%)	375k (192.)	19k (13,5 %)	375K (469.)	
Orange	9k (10%)	128k (192)	9k (50%)	1284 (582)	
Green	16K (549.)	50k (54%)	16K (76%)	44k (76%)	
Blue	25K (337.)	65K (309.)	25K (47%)	65k (48%)	
Purple	35k (279.)	150k (24%)	35K (50%)	150k (56%)	

50k/macowell