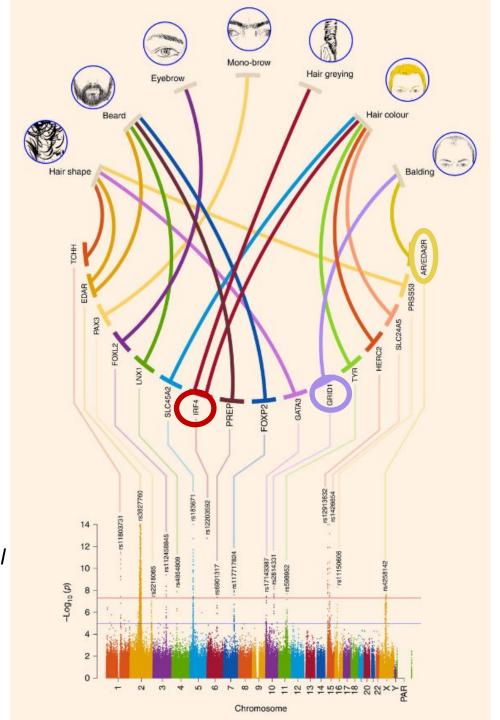
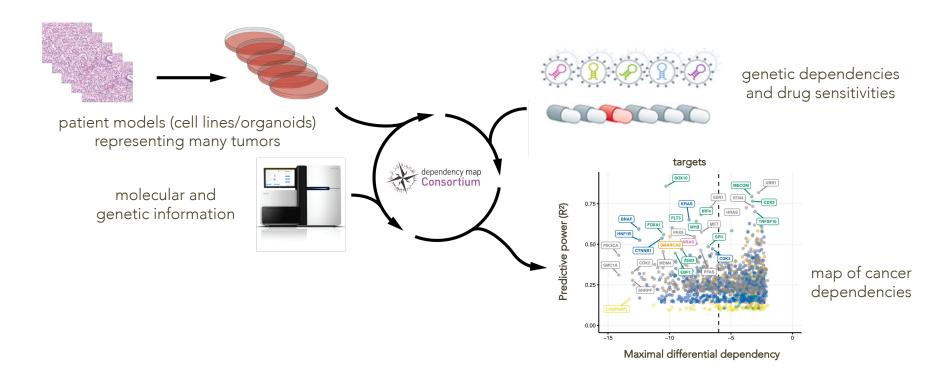
Which process or biomolecule would you study with a chemical probe if you had one in hand?


Genome Wide Association Study (GWAS):

hair-related phenotypes

A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features

Kaustubh Adhikari et al. Nature Communications, **2016**


doi: 10.1038/ncomms10815.

GWAS: correlates single-nucleotide changes across the genome with specific traits

The Cancer Dependency Map

interrogation of viability effects in cancer cell lines to map genetic dependencies

Discovery of potential TARGETS for therapeutic discovery

Discovery of **PREDICTORS** of patient response

Pre-publication DATA RELEASES to enable the scientific community at depmap.org

As of 11/21/21:

>2,000 cancer models 3913 genetic dependency screens 33 drug panels in sensitivity screens

IRF4 interferon regulatory factor 4

Overview

Dependency

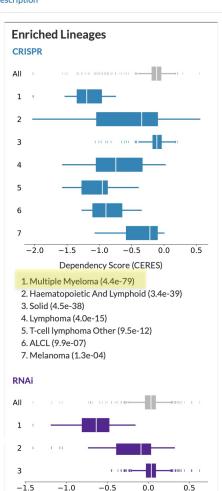
Characterization

Description

Dependent Cell Lines CRISPR: 42/558 STRONGLY SELECTIVE RNAi: 11/711 STRONGLY SELECTIVE -2.0 -1.5 -1.0 -0.5 0.0

Dependency Score: Outcome from DEMETER2 or CERES. A lower score means that a gene is more likely to be dependent in a given cell line. A score of 0 is equivalent to a gene that is not essential whereas a score of -1 corresponds to the median of all common essential genes.

Dependency Score

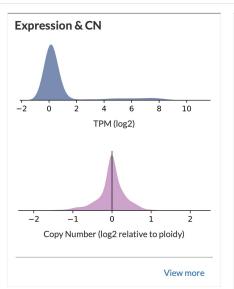

Strongly Selective: A gene whose dependency is at least 100 times more likely to have been sampled from a skewed distribution than a normal distribution (i.e. skewed-LRT value > 100).

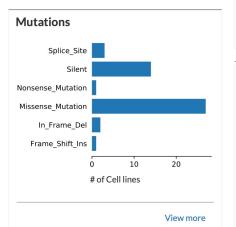
View more

The protein encoded by this gene belongs to the IRF (interferon regulatory factor) family of transcription factors characterized by an unique tryntonhan pentad repeat DNA-binding domain. The IRFs are View more

Search external sites for IRF4

- PubMed (996 entries)
- GeneCards
- GTEx
- NCBI




Dependency Score (DEMETER2)

2. Haematopoietic And Lymphoid (3.3e-28)

1. Multiple Myeloma (1.3e-72)

3. Solid (6.5e-21)

Target Tractability

Original and additional data on CanSAR

Druggable by Ligand Based Assessment No

View mor

No

No

No

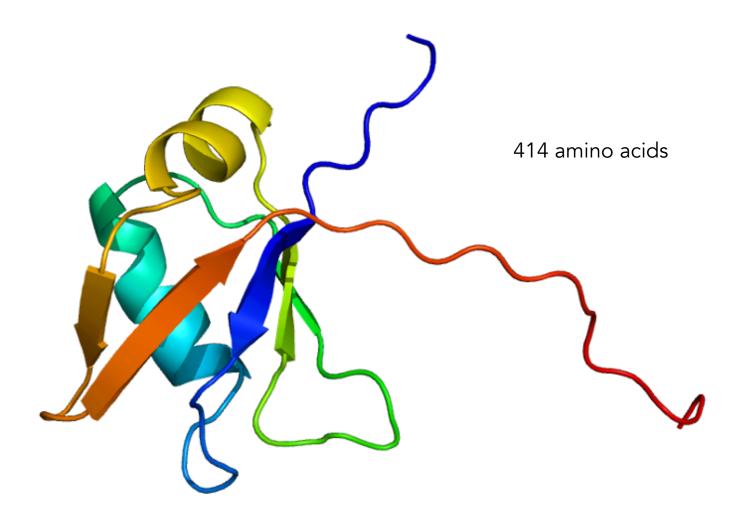
Top Co-dependencies

Bioactive Compounds

Druggable Structure

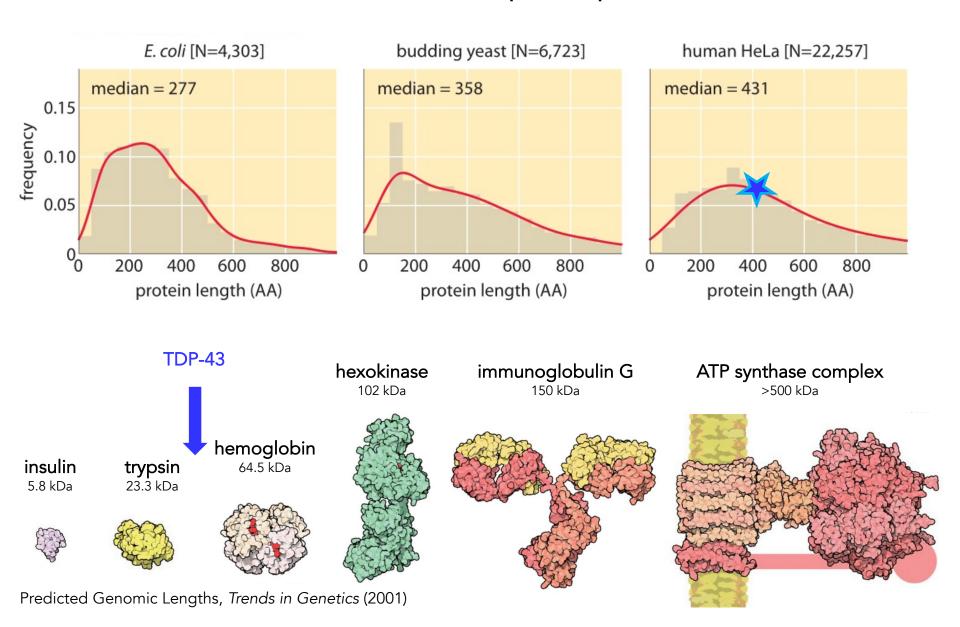
Enzyme

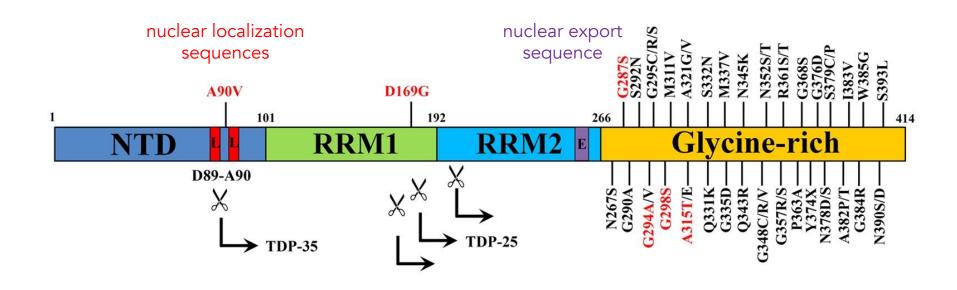
CRISPR (Avana) Public 19Q1


	Gene	Pearson correlation
Plot	PRDM1	0.58
Plot	POU2AF1	0.57
Plot	NFKB1	0.50
Plot	MEF2C	0.47
Plot	IKBKB	0.45

Combined RNAi (Broad, Novartis, Marcotte)

	Gene	Pearson correlation
Plot	NFKB1	0.35
Plot	ARMCX6	0.33
Plot	TLNRD1	0.32
Plot	SP2	-0.31
Plot	MYSM1	0.31


Our protein target - TDP-43 February 8, 2022


TDP-43

TAR DNA-binding Protein that is 43 kilodaltons

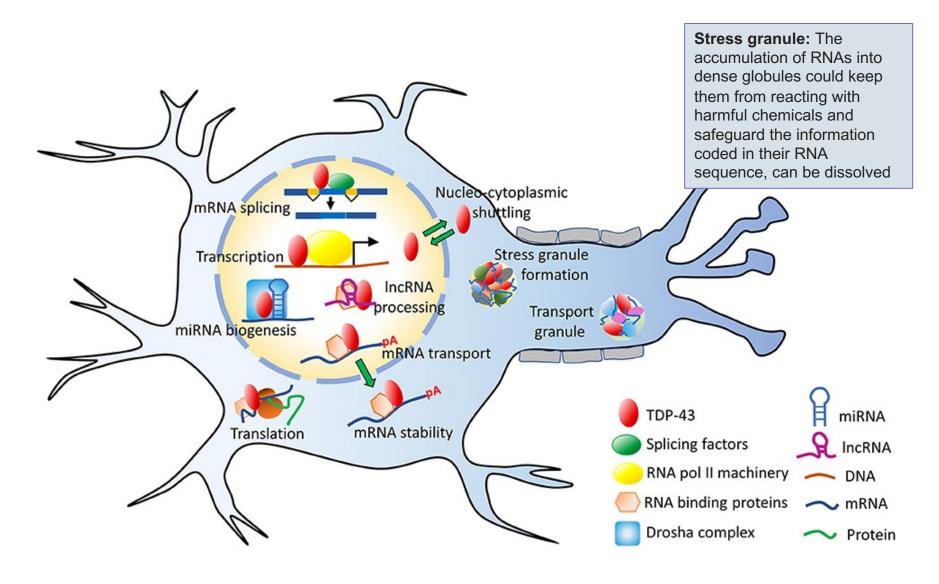
How big is the typical protein?

Four major domains

50 missense mutations identified in ALS patients

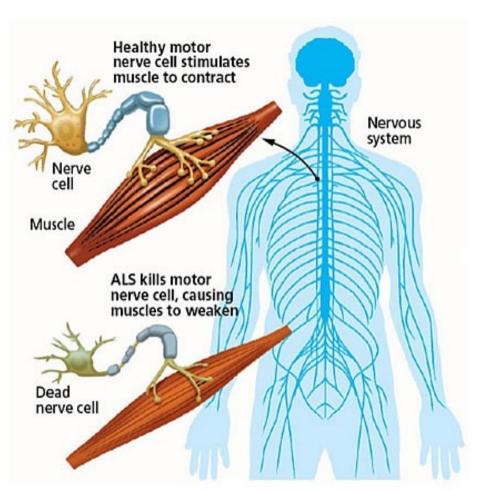
NTD = N-terminal domain

(prevalent mutations in red)


RRM1 = RNA-recognition motif 1

RRM1 = RNA-recognition motif 2

Gly-rich = C-terminal glycine-rich domain


multiple cleavage products

Nuclear and cytoplasmic functions of TPD-43

Amyotrophic lateral sclerosis

ALS or Lou Gehrig's disease

- progressive neurodegenerative disease that destroys motor neurons
- when motor neurons cannot send impulses to muscle, the muscles begin to waste away
- nerve cell death makes it impossible for the brain to control muscles or signal for them to move
- eventually, all muscles are affected, including arms and hands, legs and feet, and those that control swallowing and breathing

ALS stats

- 90% of ALS cases are sporadic and strike any race or ethnic background, at any age
- ALS is responsible for 2 deaths per 100,000 people (annually), greater than Huntington's or multiple sclerosis
- ~5,000 patients diagnosed each year in the US, ~30,000 at any given time
- life expectancy from diagnosis is 2-5 years, 20% live longer
- 80% cases begin between at 40-70 yo
- Gulf War veterans develop ALS at ~2x
 the rate of the typical population
- care costs are high (avg. >\$200k/yr)

Pete Frates, Who Promoted the Ice Bucket Challenge, Dies at 34

The former college baseball player's involvement in the viral trend helped raise more than \$100 million toward fighting A.L.S.

Pete Frates and his wife, Julie, at a Boston Red Sox game in 2015. He helped raise more than \$100 million toward fighting amyotrophic lateral sclerosis, a disease he learned he had in 2012. Elise Amendola/Associated Press

The New York Times

<

Left: Cosmologist Stephen Hawking on October 10, 1979 in Princeton, New Jersey. Photo by Santi Visalli/Getty Images

Go Deeper

als

amyotrophic lateral sclerosis

lou gehrig's disease

stephen hawking

Leave a comment

Share •

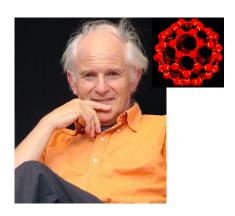
How did Stephen Hawking live 55 years with ALS?

Lou Gehrig Baseball died 3 yr pd

Ezzard Charles Boxer died 8 yr pd

Dwight Clark Football died 3 yr pd

Mao Zedong died of heart attack


Hideyuki Ashihara Karate Master died 8 yr pd

Marián Čišovský Soccer died 6 yr pd

Joost van der Westhuizen Rugby died 6 yr pd

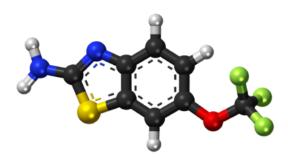
Nobel Laureate Harry Kroto died 2 yr pd

Women?

'sporadic' cases – 90%, usually in 50s 2x more frequent in men than women

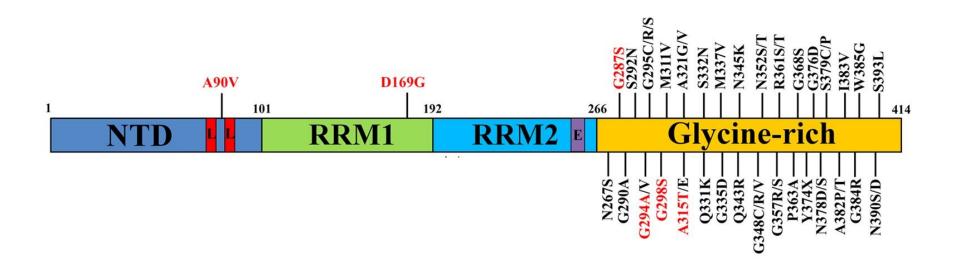
familial cases – 10%, younger onset affects men and women equally

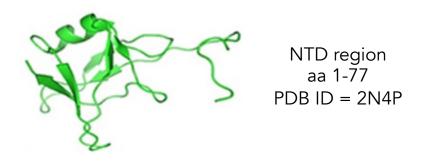
several gene mutations have been discovered in familial disease (FALS):

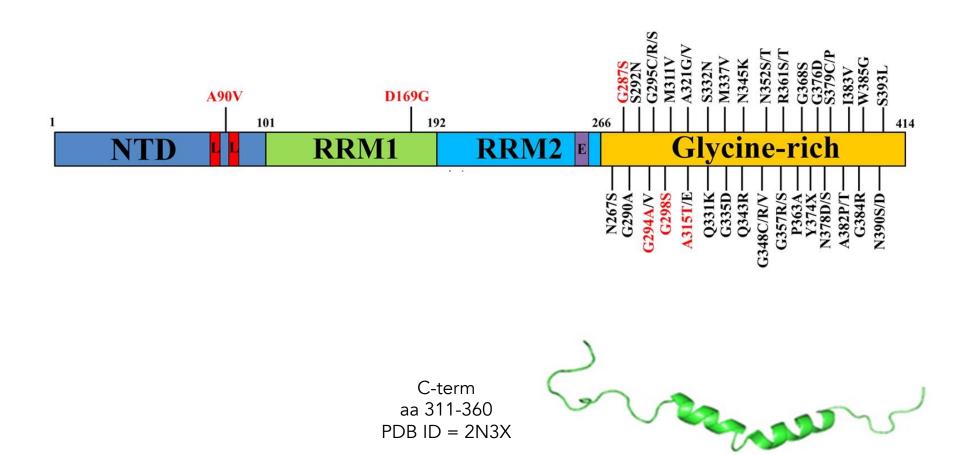

hexanucleotide (GGGCCC) repeat expansion in non-coding region of C9ORF72 gene on chromosome 9p21

SOD1 – Cu/Zn superoxide dismutase

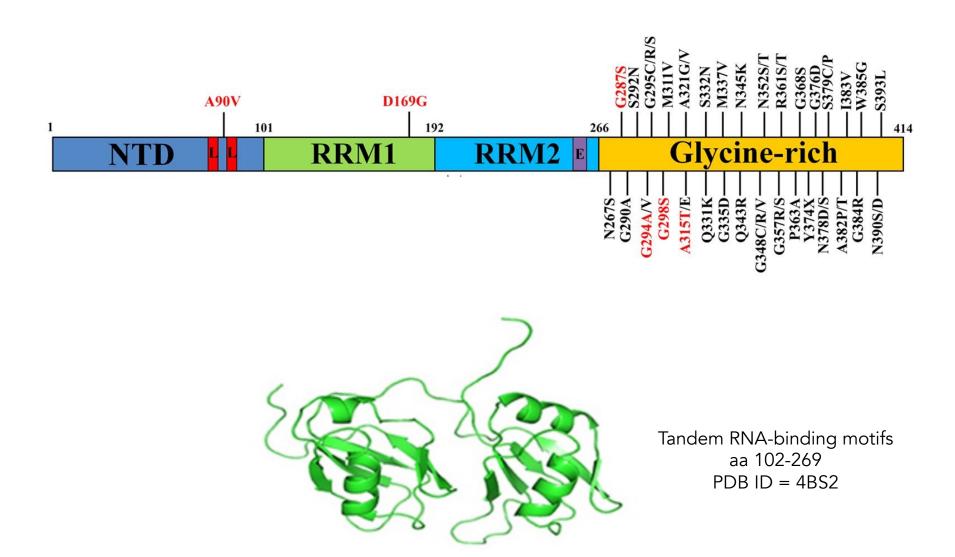
TDP-43 – RNA processing protein that forms toxic neuronal and glial inclusion bodies

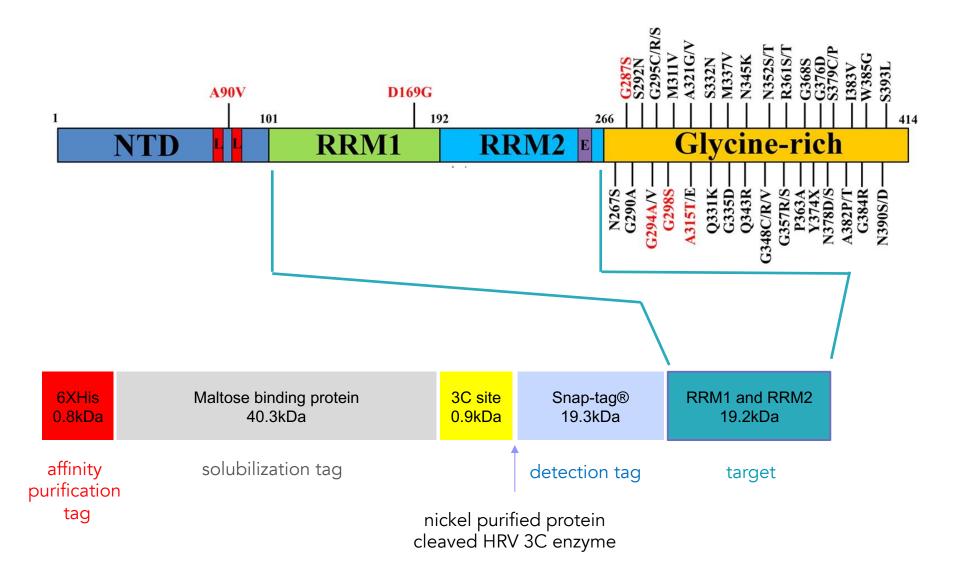

Massive unmet therapeutic need for ALS patients only one drug available


$$H_2N$$
 S
 O
 F
 F

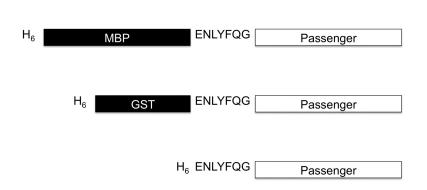


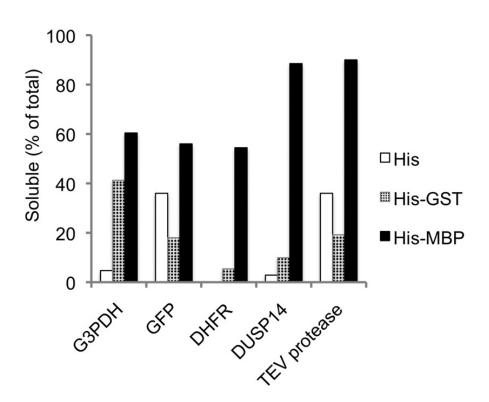
Riluzole


- delays the onset of ventilator-dependence
- may increase survival by 2-3 months
- 9% gain in probability of surviving 1 year
- many side effects
- interacts with sodium channels in damaged neurons
- may non-specifically interact with other receptors (kainite, NMDA, GABA_A)
- primary mechanism of action is stimulation of glutamate uptake
- glutamate lingers at synapses of damaged neurons and swift clearance is necessary



Low complexity domain (LCD) tendency to aggregate





Maltose Binding Protein (MBP) is an enhancer of protein solubility

fusion protein architecture

comparison of solubility across multiple passengers

TDP-43 purification in 20.109 lab

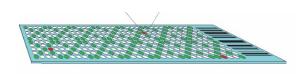
6XHis 0.8kDa

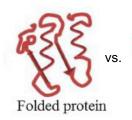
Maltose binding protein 40.3kDa

3C site 0.9kDa

Snap-tag® 19.3kDa

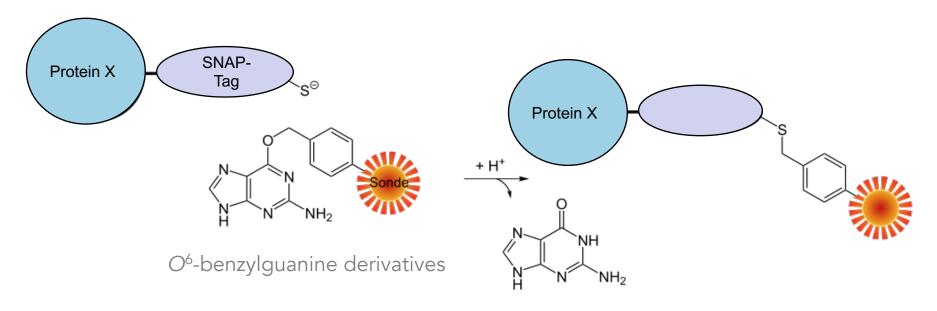
RRM1 and RRM2 19.2kDa

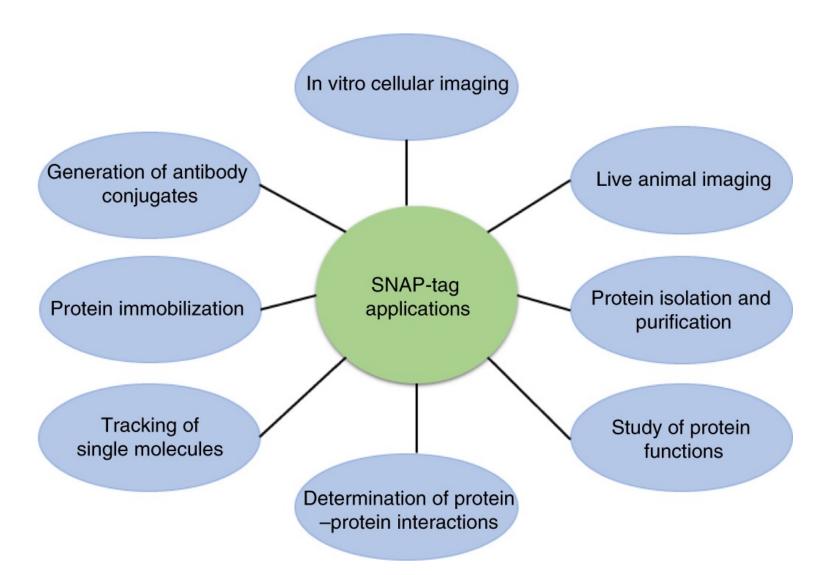

Bind expressed protein to nickel resin


Cleave HRV 3C enzyme

Snap-tag® 19.3kDa RRM1 and RRM2 19.2kDa

Apply to small-molecule microarray (2020) Execute TDP-43 aggregation assays (2022)




SNAP tags can be fused to proteins and further specifically and covalently tagged with a ligand

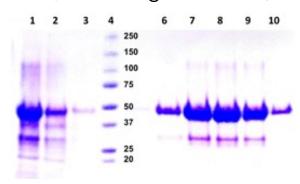
dye labeling reaction

engineered O-6-methylguanine-DNA methyltransferase (MGMT)

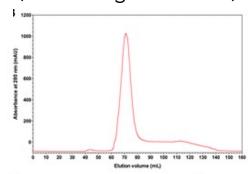
SNAP tags can be used in many applications

October 2019

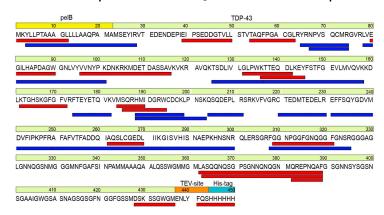
Research | A Full Access

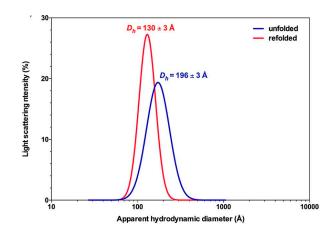

Isolation and characterization of soluble human full-length TDP-43 associated with neurodegeneration

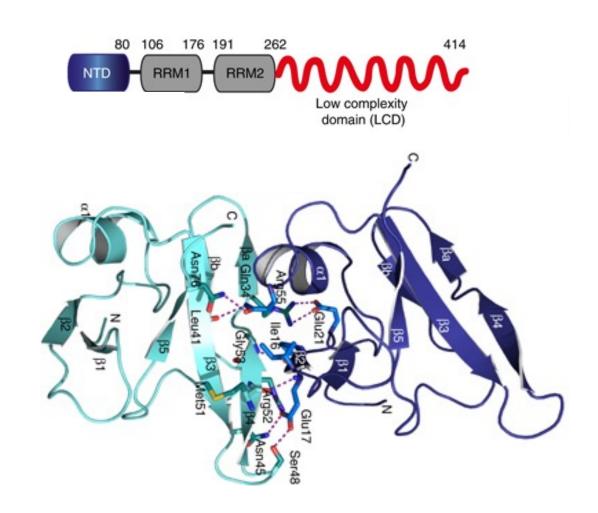
Mirella Vivoli Vega, Alessia Nigro, Simone Luti, Claudia Capitini, Giulia Fani, Leonardo Gonnelli, Francesca Boscaro, and Fabrizio Chiti ⊡


Published Online: 1 Oct 2019 https://doi.org/10.1096/fj.201900474R

nickel chromatography (denaturing conditions)

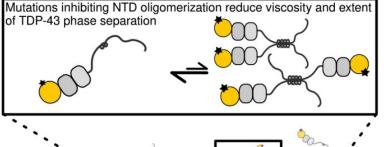

size exclusion column (denaturing conditions)


refolding & western blot


mass spectrometry - MW & sequence

analytical SEC reveals a dimer!

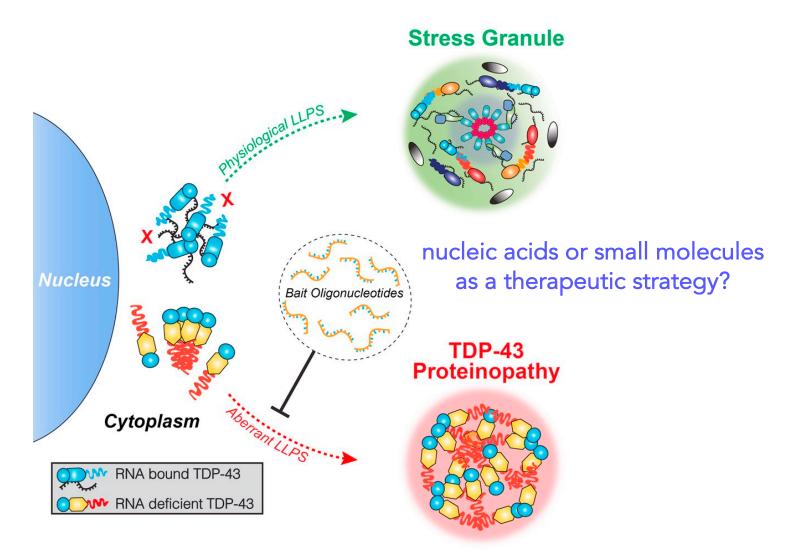
N-Terminal Domain (NTD) forms homodimers in crystal structures



NTD orientation plays a role in TDP-43 polymerization and phase separation

TDP-43 oligomers: Functional high-order oligomers promote phase separation Phase separation driven by intermolecular NTD/NTD and CTD/CTD contacts RRM2 stress granule

NTD oligomerization-disrupting mutants:


Disruption of NTD/NTD contacts destabilizes phase separation

aggregates

peptidomimetics or small molecules as a therapeutic strategy to sequester mutants from aggregation?

RNA binding assists liquid-liquid phase separation of TDP-43 in disease

Companies are interested in agents to control phase separation in an effort to develop drugs for neurodegeneration and cancer

nature biotechnology

Explore content > About the journal > Publish with us >

nature > nature biotechnology > news > article

News | Published: 09 February 2021

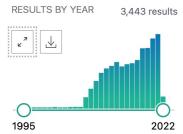
Drug startups coalesce around condensates

Elie Dolgin

Nature Biotechnology **39**, 123–125 (2021) | Cite this article

7045 Accesses 5 Citations 100 Altmetric Metrics

Once a neglected biological phenomenon, condensates are attracting interest from small companies and large pharmas.



> EMBO J. 2022 Feb 3:e108443, doi: 10.15252/embi.2021108443. Online ahead of print.

Disease-linked TDP-43 hyperphosphorylation suppresses TDP-43 condensation and aggregation

Lara A Gruijs da Silva ^{1, 2}, Francesca Simonetti ^{1, 2, 3}, Saskia Hutten ¹, Henrick Riemenschneider ³, Erin L Sternburg ¹, Lisa M Pietrek ⁴, Jakob Gebel ⁵, Volker Dötsch ⁵, Dieter Edbauer ^{2, 3, 6}, Gerhard Hummer ^{4, 7}, Lukas S Stelzl ^{1, 4, 8, 9}, Dorothee Dormann ^{1, 6, 9}

Affiliations + expand

PMID: 35112738 DOI: 10.15252/embi.2021108443

> PLoS One, 2022 Feb 3:17(2):e0255710, doi: 10.1371/journal.pone.0255710, eCollection 2022.

Low-level overexpression of wild type TDP-43 causes late-onset, progressive neurodegeneration and paralysis in mice

Chunxing Yang ¹, Tao Qiao ¹, Jia Yu ², Hongyan Wang ¹, Yansu Guo ¹, Johnny Salameh ³, Jake Metterville ³, Sepideh Parsi ¹, Issa Yusuf ¹, Robert H Brown ³ ⁴ ⁵, Huaibin Cai ², Zuoshang Xu ¹ ⁴ ⁵

Affiliations + expand

PMID: 9MC812852 DOI: 10.1371/journal.pone.0255710

> Nat Neurosci. 2022 Jan;25(1):26-38. doi: 10.1038/s41593-021-00975-6. Epub 2021 Dec 16.

TREM2 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related neurodegeneration

Manling Xie $^{\#}$ 1 2 , Yong U Liu $^{\#}$ 3 4 , Shunyi Zhao 1 , Lingxin Zhang 5 , Dale B Bosco 1 , Yuan-Ping Pang 6 , Jun Zhong 7 , Udit Sheth 2 8 , Yuka A Martens 8 , Na Zhao 8 , Chia-Chen Liu 8 , Yongxian Zhuang 5 , Liewei Wang 5 , Dennis W Dickson 8 , Mark P Mattson 9 , Guojun Bu 8 , Long-Jun Wu 10 11 12

Affiliations + expand

PMID: 34916658 PMCID: PMC8741737 (available on 2022-06-16) DOI: 10.1038/s41593-021-00975-6

our knowledge is rapidly evolving

> Nature. 2022 Jan;601(7891):139-143. doi: 10.1038/s41586-021-04199-3. Epub 2021 Dec 8.

Structure of pathological TDP-43 filaments from ALS with FTLD

```
Diana Arseni <sup>1</sup>, Masato Hasegawa <sup>2</sup>, Alexey G Murzin <sup>1</sup>, Fuyuki Kametani <sup>2</sup>, Makoto Arai <sup>3</sup>, Mari Yoshida <sup>4</sup>, Benjamin Ryskeldi-Falcon <sup>5</sup>

Affiliations + expand

PMID: 34880495 PMCID: PMC7612255 (available on 2022-07-01)

DOI: 10.1038/s41586-021-04199-3

> Neuron. 2022 Jan 11;50896-6273(21)01036-9. doi: 10.1016/j.neuron.2021.12.019.

Online ahead of print.
```

Genome-wide identification of the genetic basis of amyotrophic lateral sclerosis

```
Sai Zhang <sup>1</sup>, Johnathan Cooper-Knock <sup>2</sup>, Annika K Weimer <sup>1</sup>, Minyi Shi <sup>1</sup>, Tobias Moll <sup>2</sup>, Jack N G Marshall <sup>2</sup>, Calum Harvey <sup>2</sup>, Helia Ghahremani Nezhad <sup>2</sup>, John Franklin <sup>2</sup>, Cleide Dos Santos Souza <sup>2</sup>, Ke Ning <sup>2</sup>, Cheng Wang <sup>3</sup>, Jingjing Li <sup>3</sup>, Allison A Dilliott <sup>4</sup>, Sali Farhan <sup>4</sup>, Eran Elhaik <sup>5</sup>, Iris Pasniceanu <sup>2</sup>, Matthew R Livesey <sup>2</sup>, Chen Eitan <sup>6</sup>, Eran Hornstein <sup>6</sup>, Kevin P Kenna <sup>7</sup>, Project Mine ALS Sequencing Consortium; Jan H Veldink <sup>7</sup>, Laura Ferraiuolo <sup>2</sup>, Pamela J Shaw <sup>2</sup>, Michael P Snyder <sup>8</sup>

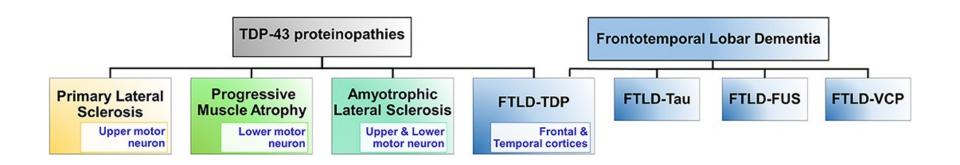
Collaborators, Affiliations + expand
PMID: 35045337 DOI: 10.1016/j.neuron.2021.12.019

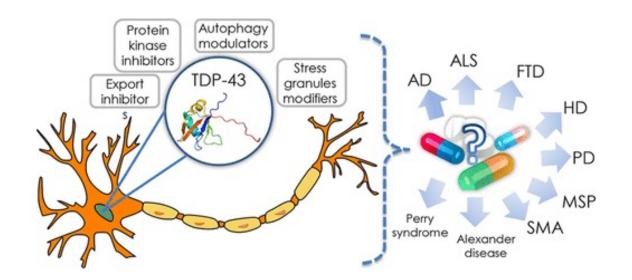
> J Med Chem. 2022 Jan 27;65(2):1585-1607. doi: 10.1021/acs.jmedchem.1c01942. Epub 2022 Jan 3.
```

TDP-43 Modulation by Tau-Tubulin Kinase 1 Inhibitors: A New Avenue for Future Amyotrophic Lateral Sclerosis Therapy

```
Vanesa Nozal <sup>1 2</sup>, Loreto Martínez-González <sup>1 2</sup>, Marta Gomez-Almeria <sup>3</sup>, Claudia Gonzalo-Consuegra <sup>3</sup>, Paula Santana <sup>4</sup>, Apirat Chaikuad <sup>5 6</sup>, Eva Pérez-Cuevas <sup>1 2</sup>, Stefan Knapp <sup>5 6</sup>, Daniel Lietha <sup>1</sup>, David Ramírez <sup>7</sup>, Sabrina Petralla <sup>8</sup>, Barbara Monti <sup>8</sup>, Carmen Gil <sup>1</sup>, Angeles Martín-Requero <sup>1 2</sup>, Valle Palomo <sup>1 2</sup>, Eva de Lago <sup>2 3</sup>, Ana Martinez <sup>1 2</sup> Affiliations + expand PMID: 34978799 DOI: 10.1021/acs.jmedchem.1c01942
```

> Brain. 2022 Jan 25;awab285. doi: 10.1093/brain/awab285. Online ahead of print.


Phosphorylated TDP-43 aggregates in peripheral motor nerves of patients with amyotrophic lateral sclerosis


```
Nilo Riva <sup>1, 2</sup>, Francesco Gentile <sup>1</sup>, Federica Cerri <sup>1, 2</sup>, Francesca Gallia <sup>3</sup>, Paola Podini <sup>1</sup>, Giorgia Dina <sup>1</sup>, Yuri Matteo Falzone <sup>1, 2</sup>, Raffaella Fazio <sup>2</sup>, Christian Lunetta <sup>4</sup>, Andrea Calvo <sup>5</sup>, Giancarlo Logroscino <sup>6</sup>, Giuseppe Lauria <sup>7, 8</sup>, Massimo Corbo <sup>9</sup>, Sandro Iannaccone <sup>10</sup>, Adriano Chiò <sup>5</sup>, Alberto Lazzerini <sup>11</sup>, Eduardo Nobile-Orazio <sup>3</sup>, Massimo Filippi <sup>2, 12, 13, 14</sup>, Angelo Quattrini <sup>1</sup>

Affiliations + expand
```

PMID: 35076694 DOI: 10.1093/brain/awab285

TDP-43 aggregation is observed in multiple diseases

Upcoming lectures

2/3/22	Lecture 1	Intro to chemical biology: small molecules, probes, and screens
2/8/22	Lecture 2	Our protein target: TDP-43
2/10/22	Lecture 3	Small molecule microarrays
2/15/22	Lecture 4	Quantitative evaluation of protein-ligand interactions
2/17/22	Lecture 5	A ligand discovery vignette: sonic hedgehog
2/22/22	No Class	
2/24/22	Lecture 6	Engineering transcriptional responses with a small molecule
3/1/22	Lecture 7	Wrap up discussion for Mod 1 experiments and report