Flow Cytometry Pre-Lab

Fluorescence

Principle

Analyze cells based on physical and fluorescent qualities

- 1. Sample entry and hydrodynamic focusing
- 2. Event recording
- 3. Mirrors and optical filters

Instrumentation

Sample Preparation

• Endogenous fluorescence vs. stained fluorescence

Sample Preparation

• Endogenous fluorescence vs. stained fluorescence

Analysis

- Light scatters as a laser interrogates the cell
- Direction of light scattered correlates to size and granularity

Analysis

https://www.antibody-creativebiolabs.com/flow-cytometry.htm

Analysis

- Dot plot of FS versus SS
- Each dot = single cell
- Differences in cell size and granularity determine position of cell population

Data Analysis

1 *# Imports* **import** matplotlib.pyplot **as** plt 2 import numpy as np 3 import sys 4 import cytoflow as flow 5 import string 6 import pandas as pd 7 import seaborn as sns 8 from scipy import stats 9 10 import re 11 **import** matplotlib.colors **as** colors 12 **import** matplotlib 13 import matplotlib.pyplot as plt 14 15 sys.path.append('../modules') 16 **import** cf imports 17 import cf_helpers 18

Data Analysis

```
1 # Provide full path to flow cytometry .fcs file directory and pass to fixer
   exp dirs = [
2
 3
       r'/Users/danielpascal/Desktop/MIT/Voigt Lab/Flow Data/cinI_RBS_screen/minus_zinc_1',
       r'/Users/danielpascal/Desktop/MIT/Voigt Lab/Flow Data/cinI RBS screen/plus zinc 1',
 4
 5
       r'/Users/danielpascal/Desktop/MIT/Voigt Lab/Flow Data/cinI RBS screen/minus zinc 2',
       r'/Users/danielpascal/Desktop/MIT/Voigt Lab/Flow Data/cinI_RBS_screen/plus_zinc_2'
 6
7]
 8
   conds_dir = None
 9
10 # Loop through all and add to one dataframe
11 i = 0
12 for exp_dir in exp_dirs:
       fcs_dir = cf_imports.dir_fix(exp_dir)
13
14
       exp = cf_imports.exp_from_dirs(fcs_dir, conds_dir, event_num = 5000) #subset 5000 events
15
16
           # Apply 2D gaussian fit on FSC/SSC to make a gate
17
       g = flow.GaussianMixtureOp(name = "fsc_ssc_gate",
18
                               channels = ["FSC-A", "SSC-A"],
19
                               scale = {'FSC-A' : 'log',
20
                                        'SSC-A' : 'log'},
21
                               num components = 1,
22
                               sigma = 2)
23
       g.estimate(exp)
24
       exp2 = g.apply(exp)
25
26
       gg = flow.GaussianMixtureOp(name = "fsc_ssc_gate2",
27
                               channels = ["FSC-H", "SSC-H"],
28
                               scale = {'FSC-H' : 'log',
29
                                        'SSC-H' 'log'},
30
                               num_components = 1,
31
                               sigma = 2)
32
       gg.estimate(exp)
33
       exp3 = gg.apply(exp)
```

Data Analysis

	FITC-A	FSC-A	FSC- H	FSC-W	Omit	PE-Texas Red-A	SSC-A	SSC-H	SSC-W	Time	Zinc	cells	col	name	nι
0	950.950012	1531.139893	2774.0	36173.316406	Ν	-11.520000	7805.070312	8082.0	63290.410156	125.000000	0.0	EcN	1	RBS_1	
1	992.810059	1551.419922	2590.0	39256.316406	Ν	-136.080002	8603.140625	9079.0	62101.046875	141.100006	0.0	EcN	1	RBS_1	
2	1342.250000	3935.099854	2256.0	114313.257812	Ν	-84.240005	7039.760254	7688.0	60010.109375	277.600006	0.0	EcN	1	RBS_1	
3	831.740051	213.719986	2060.0	6799.201172	Ν	-98.640007	7786.870117	8357.0	61065.011719	228.500000	0.0	EcN	1	RBS_1	
4	753.480042	1978.859985	2178.0	59543.878906	Ν	59.760002	3995.810059	4634.0	56510.445312	389.100006	0.0	EcN	1	RBS_1	
333993	218.400009	5026.319824	4754.0	69290.054688	Ν	-89.280006	9083.620117	9422.0	63182.351562	313.100006	500.0	EcN	7	RBS_163	
333994	73.709999	1889.939941	3417.0	36247.910156	Ν	36.720001	9167.339844	8841.0	67955.070312	456.299988	500.0	EcN	7	RBS_163	
333996	135.589996	2204.280029	2383.0	60620.941406	Ν	69.840004	13058.500000	13474.0	63515.054688	66.199997	500.0	EcN	7	RBS_163	
333997	14.560000	6188.519531	5954.0	68117.375000	Ν	-9.360001	21638.890625	21682.0	65405.699219	617.299988	500.0	EcN	7	RBS_163	
333998	126.490005	4346.159668	3379.0	84294.148438	Ν	-15.840000	10938.200195	11447.0	62623.039062	560.200012	500.0	EcN	7	RBS_163	

1074138 rows × 18 columns

Zn²⁺Concentration: 0μΜ

500 μΜ

Applications

Zn²⁺Concentration: 0 µM 50

500 µM

Advantages

- High throughput
- Multiparametric analysis
- Highly sensitive

Limitations

- Specialized instrumentation and training
- Time-consuming sample prep
- Complex data analysis
- Difficulty analyzing autofluorescent or overlapping signals

Future directions

- New fluorophores
- Microfluidic devices
- Combining with special information of microscopy

Spectral flow cytometry

https://fluorofinder.com/spectral-flow-cytometers/

Detector Array

https://www.ncl.ac.uk/fccf/core-technologies/imaging-cytometry/

Imaging flow cytometry

